首页

河南省洛阳市2021-2022学年高二数学上学期期末(文)试卷(Word版附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/17

2/17

剩余15页未读,查看更多内容需下载

洛阳市2021-2022学年第一学期期末考试高二数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.不等式的解集为()A.B.C.D.【答案】A【解析】【分析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.2.“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.即不充分也不必要条件【答案】D【解析】【分析】根据充分条件、必要条件的判定方法,结合不等式的性质,即可求解.【详解】由,可得,即,当时,,但的符号不确定,所以充分性不成立;反之当时,也不一定成立,所以必要性不成立,所以是的即不充分也不必要条件.故选:D.3.已知抛物线的准线方程为,则此抛物线的标准方程为() A.B.C.D.【答案】D【解析】【分析】由已知设抛物线方程为,由题意可得,求出,从而可得抛物线的方程【详解】因为抛物线的准线方程为,所以设抛物线方程为,则,得,所以抛物线方程,故选:D,4.已知等比数列的前n项和为,若,,则()A.250B.210C.160D.90【答案】B【解析】【分析】设为等比数列,由此利用等比数列的前项和为能求出结果.【详解】设,等比数列的前项和为为等比数列,为等比数列,解得.故选:B.5.命题p:存在一个实数﹐它的绝对值不是正数.则下列结论正确的是()A.:任意实数,它的绝对值是正数,为假命题B.:任意实数,它的绝对值不是正数,为假命题C.:存在一个实数,它的绝对值是正数,为真命题D.:存在一个实数,它的绝对值是负数,为真命题 【答案】A【解析】【分析】根据存在量词命题的否定为全称量词命题判断,再利用特殊值判断命题的真假;【详解】解:因为命题p“存在一个实数﹐它的绝对值不是正数”为存在量词命题,其否定为“任意实数,它的绝对值是正数”,因为,所以为假命题;故选:A6.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A.B.1C.D.2【答案】C【解析】【分析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C7.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A.B.C.D.【答案】B【解析】 【分析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B8.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A.B.C.D.【答案】D【解析】【分析】由题意得,,,然后在和求出,从而可求出值 【详解】如图,由题意得,,,在中,,在中,,所以,故选:D9.下列结论中正确的个数为()①,;②;③.A.0B.1C.2D.3【答案】C【解析】【分析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C 10.已知双曲线,过点作直线l,若l与该双曲线只有一个公共点,这样的直线条数为()A.1B.2C.3D.4【答案】D【解析】【分析】先确定双曲线的右顶点,再分垂直轴、与轴不垂直两种情况讨论,当与轴不垂直时,可设直线方程为,联立直线与抛物线方程,消元整理,再分、两种情况讨论,即可得解.【详解】解:根据双曲线方程可知右顶点为,使与有且只有一个公共点情况为:①当垂直轴时,此时过点的直线方程为,与双曲线只有一个公共点,②当与轴不垂直时,可设直线方程为联立方程可得当即时,方程只有一个根,此时直线与双曲线只有一个公共点,当时,,整理可得即故选:D11.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A.B.C.D.【答案】B【解析】【分析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案. 【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B.12.在平面直角坐标系中,已知的顶点,,其内切圆圆心在直线上,则顶点C的轨迹方程为()A.B.C.D.【答案】A【解析】【分析】根据图可得:为定值,利用根据双曲线定义,所求轨迹是以、为焦点,实轴长为6的双曲线的右支,从而写出其方程即得.【详解】解:如图设与圆切点分别为、、,则有,,,所以.根据双曲线定义,所求轨迹是以、为焦点,实轴长为4的双曲线的右支(右顶点除外),即、,又,所以,所以方程为.故选:A. 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.曲线在点处的切线方程是______.【答案】x-y-2=0【解析】【详解】解:因为曲线在点(1,-1)处的切线方程是由点斜式可知为x-y-2=014.已知实数x,y满足约束条件,则的最小值为______.【答案】【解析】【分析】作出该不等式表示的平面区域,由的几何意义结合距离公式得出答案.【详解】该不等式组表示的平面区域,如下图所示 过点作直线的垂线,垂足为因为表示原点与可行域中点之间的距离,所以的最小值为.故答案为:15.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______.【答案】【解析】【分析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率.【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:. 16.如图三角形数阵:123456789101112131415……按照自上而下,自左而右的顺序,2021位于第i行的第j列,则______.【答案】69【解析】【分析】由图可知,第行有个数,求出第行的最后一个数,从而可分析计算出,即可得出答案.【详解】解:由图可知,第行有个数,第行最后一个数为,因为,所以第行的最后一个数为2016,所以2021位第行,即, 又,所以2021位第行第5列,即,所以.故答案为:69.三、解答题:本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知内角A,B,C的对边分别为a,b,c,且B,A,C成等差数列.(1)求A的大小;(2)若,且的面积为,求的周长.【答案】(1)(2)【解析】【分析】(1)由等差数列的性质结合内角和定理得出A的大小;(2)先由余弦定理,结合,,得到的关系式,再由的面积为,得到的关系式,两式联立可求出,进而可确定结果.【小问1详解】因为B,A,C成等差数列,所以,所以.【小问2详解】因为,,由余弦定理可得:;又的面积为,所以,所以,所以所以周长为. 18.已知,使;不等式对一切恒成立.如果为真命题,为假命题,求实数的取值范围.【答案】【解析】【分析】若为真命题,利用分离参数法结合指数函数性质,可得;若为真命题,利用分离参数法并结合基本不等式可得,再根据为真命题,为假命题,可知,一真命题一假命题;再分“为真命题,为假命题”和“为假命题,为真命题”两种情况,求解范围,即可得到结果.【详解】解:若为真命题,则有解,所以,即;若为真命题,则对一切恒成立,令,则,当且仅当,即时,取得最小值;所以,即;又为真命题,为假命题,所以,一真命题一假命题;当为真命题,为假命题时,,所以;当为假命题,为真命题时,,所以;综上所述,.19.已知数列的前n项和为,,且.(1)求数列的通项公式;(2)令,记数列的前n项和为,求证:.【答案】(1) (2)证明见解析【解析】【分析】(1)依题意可得,即可得到是以为首项,为公比的等比数列,从而求出数列的通项公式;(2)由(1)可得,利用错位相减法求和,即可证明;【小问1详解】解:因为,,所以,所以是以为首项,为公比的等比数列,所以,所以;【小问2详解】解:由(1)可知,所以①,所以②;①②得所以;20.已知点,点B为直线上的动点,过B作直线的垂线,线段AB的中垂线与交于点P.(1)求点P的轨迹C的方程;(2)若过点的直线l与曲线C交于M,N两点,求面积的最小值.(O为坐标原点)【答案】(1)(2)【解析】【分析】(1)由已知可得,根据抛物线的定义可知点的轨迹是以为焦点,为准线的抛物线,即可得到轨迹方程;(2)设直线方程为,,,, ,联立直线与抛物线方程,消元、列出韦达定理,则,代入韦达定理,即可求出面积最小值;【小问1详解】解:由已知可得,,即点到定点的距离等于到直线的距离,故点的轨迹是以为焦点,为准线的抛物线,所以点的轨迹方程为.【小问2详解】解:当直线的倾斜角为时,与曲线只有一个交点,不符合题意;当直线的倾斜角不为时,设直线方程为,,,,,由,可得,,所以,,,,所以当且仅当时取等号,即面积的最小值为;21.已知,.(1)当时,求函数的单调递减区间;(2)当时,,求实数a的取值范围.【答案】(1) (2)【解析】【分析】(1)求出函数的导函数,再解导函数的不等式,即可求出函数的单调递减区间;(2)依题意可得当时,当时,显然成立,当时只需,参变分离得到,令,,利用导数说明函数的单调性,即可求出参数的取值范围;【小问1详解】解:当时定义域为,所以,令,解得或,令,解得,所以的单调递减区间为;【小问2详解】解:由,即,即,当时显然成立,当时,只需,即,令,,则,所以在上单调递减,所以,所以,故实数的取值范围为. 22.已知椭圆的上一点处的切线方程为,椭圆C上的点与其右焦点F的最短距离为,离心率为.(1)求椭圆C的标准方程;(2)若点P为直线上任一点,过P作椭圆的两条切线PA,PB,切点为A,B,求证:.【答案】(1)(2)证明见解析【解析】【分析】(1)设为椭圆上的点,为椭圆的右焦点,求出然后求解最小值,推出,,,得到双曲线方程.(2)设,,,,,即可得到,依题意可得以、为切点的切线方程,从而得到直线的方程,再分与两种情况讨论,即可得证;【小问1详解】解:设为椭圆上的点,为椭圆的右焦点,因为,所以,又,所以当且仅当时,,因为,所以,,因为,所以,故椭圆的标准方程为.【小问2详解】解:由(1)知,设,,,,,所以,由题知,以为切点的椭圆切线方程为,以为切点的椭圆切线方程为,又点在直线 、上,所以、,所以直线的方程为,当时,直线的斜率不存在,直线斜率为,所以,当时,,所以,所以,综上可得;

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2023-02-13 10:02:02 页数:17
价格:¥2 大小:1.08 MB
文章作者:随遇而安

推荐特供

MORE