首页

四川省绵阳市2022届高三数学第三次诊断性考试试题 文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

绵阳市高中2022级第三次诊断性考试数学(文科)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。第I卷l至2页,第II卷3至4页。满分150分。考试时间120分钟。注意事项:1.答题前,考生务必将自己的姓名、考号用0.5毫米的黑色签字笔填写在答题卡上,并将条形码粘贴在答题卡的指定位置。2.选择题使用2B铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米的黑色签字笔书写在答题卡的对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。3.考试结束后,将答题卡收回。第I卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={l,2,3,4},M={l,2,3},N={2,3,4},则等于A.{1,2}B.{2,3}C.{2,4}D.{1,4}2.抛物线x2=-4y的准线方程是A.x=-1B.x=2C.y=1D.y=-23.若复数z满足z*i=1+i(i为虚数单位),则复数z=A.1+iB.-1-iC.1-iD.-1+i4.设数列{an}是等比数列,则“a1<a2广是“数列{an}是递增数列”的a.充分而不必要条件b.必要而不充分条件c.充要条件d.既不充分又不必要条件5.平面向量a与b的夹角为600,a=(2,0),b=(cosa,sina),则|a+2b|=a.b.2c.4d.126.函数f(x)=x-sinx的大致图象可能是7.执行如图所示的程序框图,若输出结果为26,则m处的条件为10a.b.c.k>3lD.k>l58.己知函数.,若函数f(x)在区间上单调递增,则0的取值范围是A[]B[]C(][)D(][)9.已知椭圆与离心率为2的双曲线的公共焦点是F1F2,点P是两曲线的一个公共点,若,则椭圆的离心率为A.B.C.D.10.已知函数f(x)=ln(ex+a)(e是自然对数的底数,a为常数)是实数集R上的奇函数,若函数f(x)=lnx-f(x)(x2-2ex+m)在(0,+∞)上有两个零点,则实数m的取值范围是A.B.C.D.第II卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.若直线x+(a-1)y=4与直线x=1平行,则实数a的值是____12.如图所示,一个空间几何体的正视图和侧视图都是边长为4的正方形,俯视图是一个直径为4的圆,则这个几何体的侧面积是____1013.设变量x、y满足约束条件:,则目标函数z=2x+y的最大值是_______14.己知,且则cosa=______15.定义在区间[a,b]上的函数y=f(x),是函数f(x)的导数,如果,使得f(b)-f(a)=,则称为[a,b]上的“中值点”.下列函数:①f(x)=2x+l,②f(x)=x2-x+l,③f(x)=lnx+l,④,其中在区间[0,1]上的“中值点”多于一个的函数是______(请写出你认为正确的所有结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)从高三学生中抽取n名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间[40,100),且成绩在区间[70,90)的学生人数是27人.(I)求n的值;(II)试估计这n名学生的平均成绩;(III)若从数学成绩(单位:分)在[40,60)的学生中随机选取2人进行成绩分析,求至少有1人成绩在[40,50)内的概率.17.(本小题满分12分)已知{an}是等差数列,a1=3,Sn是其前n项和,在各项均为正数的等比数列{bn}中,b1=1且b2+S2=1O,S5=5b3+3a2.(I)求数列{an},{bn}的通项公式;(II)设,数列{cn}的前n项和为Tn,求证18.(本小题满分12分)如图,ABCD是边长为2的正方形,ED丄平面ABCD,ED=1,10EF//BD且EF=BD.(I)求证:BF//平面ACE(II)求证:平面EAC丄平面BDEF;(III)求几何体ABCDEF的体积.19.(本小题满分12分)函数的部分图象如图示,将y=f(x)的图象向右平移个单位后得到函数y=f(x)的图象.(I)求函数y=g(x)的解析式;(II)已知ΔABC中三个内角A,B,C的对边分别为a,b,c,且满足+=2sinAsinaB,且C=,c=3,求ΔABC的面积.20.(本小题满分13分)已知椭圆C:的离心率为,以原点为圆心,椭圆c的短半轴长为半径的圆与直线相切.A、B是椭圆的左右顶点,直线l过B点且与x轴垂直,如图.(I)求椭圆的标准方程;(II)设G是椭圆上异于A、B的任意一点,GH丄x轴,H为垂足,延长HG到点Q使得HG=GQ,连接AQ并延长交直线l于点M,点N为MB的中点,判定直线QN与以AB为直径的圆O的位置关系,并证明你的结论.21.(本小题满分14分)已知函数f(x)=ex-ax(e为自然对数的底数).(I)求函数f(x)的单调区间;(II)如果对任意,都有不等式f(x)>x+x2成立,求实数a的取值范围;10(III)设,证明:+++…+<绵阳市高中2022级第三次诊断性考试数学(文)参考解答及评分标准一、选择题:本大题共10小题,每小题5分,共50分.DCCBBAABDD二、填空题:本大题共5小题,每小题5分,共25分.11.112.16π13.314.15.①④三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.解:(Ⅰ)成绩在区间的频率是:1(0.02+0.016+0.006+0.004)×10=0.54,∴人.……………………………………………………………3分(Ⅱ)成绩在区间的频率是:1(0.02+0.016+0.006+0.004+0.03)10=0.24,利用组中值估计这50名学生的数学平均成绩是:45×0.04+55×0.06+65×0.2+75×0.3+85×0.24+95×0.16=76.2.……………3分(Ⅲ)成绩在区间的学生人数是:50×0.04=2人,成绩在区间的学生人数是:50×0.06=3人,设成绩在区间的学生分别是A1,A2,成绩在区间的学生分别是B1,B2,B3,从成绩在的学生中随机选取2人的所有结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3)共10种情况.至少有1人成绩在内的结果有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3)共7种情况.∴至少有1人成绩在内的概率P=.……………………………6分17.解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,10由题意可得:解得q=2或q=(舍),d=2.∴数列{an}的通项公式是an=2n+1,数列{bn}的通项公式是.…7分(Ⅱ)由(Ⅰ)知,于是,∴<.…………12分18.解:(Ⅰ)如图,记AC与BD的交点为O,连接EO,于是DO=OB.ABCDEFO∵EF∥BD且EF=BD,∴EFOB,∴四边形EFBO是平行四边形,∴BF∥EO.而BF平面ACE,EO平面ACE,∴BF∥平面ACE.…………………………4分(Ⅱ)∵ED⊥平面ABCD,AC平面ABCD,∴ED⊥AC.∵ABCD是正方形,∴BD⊥AC,∴AC⊥平面BDEF.又AC⊂平面EAC,故平面EAC⊥平面BDEF.……………………………8分(Ⅲ)连结FO,∵EFDO,∴四边形EFOD是平行四边形.由ED⊥平面ABCD可得ED⊥DO,∴四边形EFOD是矩形.∵平面EAC⊥平面BDEF.∴点F到平面ACE的距离等于就是Rt△EFO斜边EO上的高,且高h==.∴几何体ABCDEF的体积10==2.……………………………………………12分19.解:(Ⅰ)由图知:,解得ω=2.再由,得,即.由,得.∴.∴,即函数y=g(x)的解析式为g(x)=.………………………………6分(Ⅱ)由已知化简得:.∵(R为△ABC的外接圆半径),∴,∴sinA=,sinB=.∴,即.①由余弦定理,c2=a2+b2-2abcosC,即9=a2+b2-ab=(a+b)2-3ab.②联立①②可得:2(ab)2-3ab-9=0,解得:ab=3或ab=(舍去),10故△ABC的面积S△ABC=.…………………………………12分20.解:(Ⅰ)由题可得:e=.∵以原点为圆心,椭圆C的短半轴长为半径的圆与直线x+y+=0相切,∴=b,解得b=1.再由a2=b2+c2,可解得:a=2.∴椭圆的标准方程:.……………………………………………5分(Ⅱ)由(Ⅰ)可知:A(-2,0),B(2,0),直线l的方程为:x=2.设G(x0,y0)(y0≠0),于是H(x0,0),Q(x0,2y0),且有,即4y02=4-x02.设直线AQ与直线BQ的斜率分别为:kAQ,kBQ,∵,即AQ⊥BQ,∴点Q在以AB为直径的圆上.∵直线AQ的方程为:,由解得:即,∴.∴直线QN的斜率为:,∴,于是直线OQ与直线QN垂直,∴直线QN与以AB为直径的圆O相切.…………………………………13分21.解:(Ⅰ)∵,10当a≤0时,得函数f(x)在(-∞,+∞)上是增函数.当a>0时,若x∈(lna,+∞),,得函数在(lna,+∞)上是增函数;若x∈(-∞,lna),,得函数在(-∞,lna)上是减函数.综上所述,当a≤0时,函数f(x)的单调递增区间是(-∞,+∞);当a>0时,函数f(x)的单调递增区间是(lna,+∞),单调递减区间是(-∞,lna).…5分(Ⅱ)由题知:不等式ex-ax>x+x2对任意成立,即不等式对任意成立.设(x≥2),于是.再设,得.由x≥2,得,即在上单调递增,∴h(x)≥h(2)=e2-4>0,进而,∴g(x)在上单调递增,∴,∴,即实数a的取值范围是.………………………10分(Ⅲ)由(Ⅰ)知,当a=1时,函数f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.∴f(x)≥f(0)=1,即ex-x≥1,整理得1+x≤ex.令(n∈N*,i=1,2,…,n-1),则≤,即≤,∴≤,≤,≤,…,≤,显然≤,10∴≤,故不等式(n∈N*)成立.……………4分10</a2广是“数列{an}是递增数列”的a.充分而不必要条件b.必要而不充分条件c.充要条件d.既不充分又不必要条件5.平面向量a与b的夹角为600,a=(2,0),b=(cosa,sina),则|a+2b|=a.b.2c.4d.126.函数f(x)=x-sinx的大致图象可能是7.执行如图所示的程序框图,若输出结果为26,则m处的条件为10a.b.c.k>

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 20:27:45 页数:10
价格:¥3 大小:207.71 KB
文章作者:U-336598

推荐特供

MORE