首页

湖南省望城区20高中数学学业水平模拟试题及答案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

2022年普通高中学业水平摸底考试试卷数学试题卷时量120分钟,总分值100分。考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对条形码上的准考证号、姓名、考试科目与考生本人准考证号、姓名是否一致。2.第一卷每题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。第二卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答的答案无效。3.考试完毕,监考员将试题卷、答题卡一并收回。第一卷一、选择题:本大题共10小题,每题4分,总分值40分。在每题给出的四个选项中,只有一项为哪一项符合题目要求的。1.如图是一个几何体的三视图,那么该几何体为A.圆柱B.圆锥C.圆台D.球2.已知集合,集合,那么A. B.  C.   D. 3.化简得到的结果是A.    B.    C.0     D.1 4.某程序框图如以下图,假设输入的值为1,那么输出的值是A.2    B.3    C.4D.55.已知向量,,假设∥,那么实数的值为A.8B.2C.2D.86.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,那么取出的球恰好是白球的概率为A.  B.   C.  D.7.如图,在正方体中,直线BD与A1C1的位置关系是A.平行 B.相交  C.异面但不垂直 D.异面且垂直5/58.不等式的解集为A.      B.C.      D.9.已知两点P(4,0),Q(0,2),那么以线段PQ为直径的圆的方程是A.(x+2)2+(y+1)2=5B.(x-2)2+(y-1)2=10C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=1010.某同学从家里骑车一路匀速行驶到学校,只是在途中遇到一次交通堵塞,耽误了一些时间,以下函数的图像最能符合上述情况的是第二卷二、填空题:本大题共5小题,每题4分,总分值20分。11.计算:=_____________。12.已知1,,9成等比数列,那么实数=_______________。13.已知是函数的零点,那么实数的值为_______________。14.在中,所对的边分别为,已知,,______________。15.已知向量a与b的夹角为,|a|=,且a×b=4,那么|b|=_______________。三、解答题:本大题共5小题,总分值40分。解容许写出文字说明、证明过程或演算步骤。16.(本小题总分值6分)已知,。(1)求的值;(2)求的值。5/517.(本小题总分值8分)某班有学生50人,其中男同学30人,用分层抽样的方法从该班抽取5人去参加某社区效劳活动。(1)求从该班男、女同学中各抽取的人数;(2)从抽取的5名同学中任选2名谈此活动的感受,求选出的2名同学中恰有1名男同学的概率。19.(本小题总分值8分)已知等比数列的公比=2,且成等差数列。(1)求及;(2)设,求数列的前5项和。20.(本小题总分值10分)已知圆C:。(1)求圆的圆心C的坐标和半径长;(2)直线L经过坐标原点且不与y轴重合,L与圆C相交于两点,求证:为定值;(3)斜率为1的直线与圆C相交于D、E两点,求直线的方程,使△CDE的面积最大。5/52022年普通高中学业水平摸底考试数学参考答案及评分标准一、选择题:本大题共10小题,每题4分,总分值40分。在每题给出的四个选项中,只有一项为哪一项符合题目要求的。将正确答案的代号填在下面的表格中。题号12345678910答案CDBBBCDACA二、填空题:本大题共5小题,每题4分,总分值20分。11、212、13、414、115、4三、解答题:本大题共5小题,总分值40分。16、解:(1),从而所以(4分);(2)=(6分);(或求出角度再计算)17.解:(1)(人),(人),所以从男同学中抽取3人,女同学中抽取2人(6分);(2)(8分)1819.解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1(2分),故an=a1qn-1=2n-1(4分);(2)因为bn=2n-1+n,(6分);所以S5=b1+b2+b3+b4+b5==46(8分)20.解:(1)配方得(x+1)2+y2=4,那么圆心C的坐标为(-1,0)(2分),圆的半径长为2(4分);(2)设直线l的方程为y=kx,联立方程组消去y得(1+k2)x2+2x-3=0(5分),那么有:(6分)所以为定值(7分)。(3)解法一设直线m的方程为y=kx+b,那么圆心C到直线m的距离,所以(8分),≤,当且仅当,即时,△CDE的面积最大(9分)从而,解之得b=3或b=-1,故所求直线方程为x-y+3=0或x-y-1=0(10分)5/5解法二由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时(8分)设直线m的方程为y=x+b,那么圆心C到直线m的距离(9分)由,得,由,得b=3或b=-1,故所求直线方程为x-y+3=0或x-y-1=0(10分)。不用注册,免费下载!5/5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-25 21:05:18 页数:5
价格:¥3 大小:14.63 KB
文章作者:U-336598

推荐特供

MORE