首页

山东省威海市高区2022届初中数学学业考试模拟训练试题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/16

2/16

剩余14页未读,查看更多内容需下载

山东省威海市高区2022届初中数学学业考试模拟训练试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答题前,考生务必先核对条形码上的姓名、准考证号和座号,然后用0.5毫米黑色签字笔将本人的姓名、准考证号和座号填写在答题卡相应位置.3.答第Ⅰ卷时,必须使用2B铅笔把答题卡上相应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案.4.答第Ⅱ卷时,必须使用0.5毫米黑色签字笔在答题卡上书写.务必在题号所指示的答题区域内作答.5.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程或演算步骤.6.考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.)1.据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为(  )A.3.3×108B.3.3×109C.3.3×107D.0.33×10102.不等式组的解集表示在数轴上,正确的是(  )A.B.C.D.3.已知m=1+,n=1-,则代数式的值为(  )A.9B.±3C.3D.54.若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是(  )A.3B.﹣3C.5D.﹣5165.一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为(  )A.1500B.1200C.900D.1800第5题第6题第7题6.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是(  )A.B.C.D.7.由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有(  )A.4B.5C.6D.78.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是(  )第8题A.15.5,15.5B.15.5,15C.15,15.5D.15,15169.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=,DE=,下列中图象中,能表示与的函数关系式的图象大致是第9题10.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为(  )A.3B.4C.6D.8第10题第11题11.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于(  )A.3:4B.:2C.:2D.2:12.勾股定理是几何中的一个重要定理。在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”16的记载。如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。图2是由图1放入矩形内得到的,∠BAC=90O,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A、90B、100C、110D、121二、填空题:(本大题共6小题,每小题3分,共18分.)13.分解因式:x3—2x2+x=.14.若关于x的分式方程-2有非负数解,则a的取值范围是.15.如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为 第18题第16题第17题第15题16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=  .17.如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4)。已知△A1B1C1的两个顶点的坐标为(1,3),(2,5)。若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.18.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An-1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An-1BnAn=60°,菱形An-1BnAnCn的周长为4n.三.解答题(本大题共7小题,共66分)19(本题满分7分).先化简再求值:,其中x是方程x2-2x=0的根.1620.(本题满分8分)目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.21.(本题满分9分)LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)603016(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?22.(本题满分8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)1623.(本题满分10分)如图,AB、BF分别是⊙O的直径和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG.(1)求证:AB⊥CD;(2)若sin∠HGF=,BF=3,求⊙O的半径长。24(本题满分12分)如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.1625.(本题满分12分)已知:如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0)(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.16162022年初中学业考试模拟训练数学答案说明:1.该答案较略,仅供参考,解答题建议中间步骤适当给分,培养学生养成重视步骤的好习惯.2.对不同方法,可研究、酌情给分.3.若答案中出现了较明显的错误,请各位老师商议后进行改正.一、选择题(本大题共12小题,每小题3分,共36分.)题号123456789101112答案AACDACCDACDC二、填空题(本大题共6小题,每小题3分,共18分.)13.x(x-1)214.a≥-且a≠2/315.16.317.(3,4)或(0,4)18.4n三、解答题(本大题共7小题,共66分)19.(7分)解:原式=[-]•=-•=-•=-(x+2)(x-1)=-x2-x+2,……………………4分解x2-2x=0得:x1=0,x2=2(使分式无意义,舍去),……………………5分∴当x=0时,原式=-0-0+2=2.……………………7分20.(8分)解:(1)共调查的中学生家长数是:40÷20%=200(人);………………1分(2)扇形C所对的圆心角的度数是:16360°×(1﹣20%﹣15%﹣60%)=18°;…………………………………………2分C类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),…………………3分补图如下:……………………4分(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;………………5分(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,一共有12种等可能结果,其中2人来自不同班级共有8种………………7分∴P(2人来自不同班级)==.…………………………………………8分21.(9分)解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为(300-x)个,根据题意得:(60-45)x+(0.9×30-25)(300-x)=3200………………………………2分解得,x=200300-200=100…………………………………………………………………3分答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.………4分(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120﹣a)个,这批灯泡的总利润为W元,根据题意,得W=(60﹣45)a+(30﹣25)(120﹣a)…………………………………5分=10a+600……………………………………………………………6分∵10a+600≤[45a+25(120﹣a)]×30%…………………………………7分16解得a≤75,…………………………………8分∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,…………………………………9分此时购进普通白炽灯泡(120﹣75)=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.…………………………………………………………………10分22.(8分)解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=ACsin30°==25,∵GD=50-30=20,∴CD=CG+GD=25+20=45,……………………2分连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△EFH中,CH==2CD=90,∴EH=EC+CH=AB-BE-AC+CH=300-50-50+90=290,……………………5分在Rt△CDH中,EF=EH·tan30°=290,……………………7分答:支撑角钢CD和EF的长度各是45cm,cm.……………………8分23.(10分)解:(1)连接OF.∵OF=OB∴∠OFB=∠B∵HF是⊙O的切线∴∠OFH=90°…………………………………………………………………2分∴∠HFB+∠OFB=90°∴∠B+∠HFB=90°∵HF=HG∴∠HFG=∠HGF又∵∠HGF=∠BGE∴∠BGE=∠HFG16∴∠BGE+∠B=90°∴∠GEB=90°∴AB⊥CD………………………………………………………………………4分(2)连接AF∵AB为⊙O直径∴∠AFB=90°…………………………………………………………………6分∴∠A+∠B=90°∴∠A=∠BGE又∵∠BGE=∠HGF∴∠A=∠HGF…………………………………………………………………8分∵sin∠HGF=∴sinA=∵∠AFB=90°,BF=3∴AB=4∴OA=OB=2…………………………………………………………………10分即⊙O的半径为224.(12分)解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),……………………1分∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,16∴PM=BD,PN=AE,∴PM=PM,∵∠NPD=∠EAC,∠MPN=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;……………………3分(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.……………………5分∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.……………………7分(3)PM=kPN……………………8分∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.16∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.……………………10分∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.……………………12分25.(12分)【解答】解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,……………………2分(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,……………………4分所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+……………………6分(3)如图,16当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,……………………8分∴,∴DP=,∴=,∴PM=,DM=,……………………10分∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P(,).……………………12分16

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-25 23:41:03 页数:16
价格:¥3 大小:438.34 KB
文章作者:U-336598

推荐特供

MORE