2022版高考数学二轮复习专题六统计与概率专题对点练20统计与概率文
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题对点练20 统计与概率1.为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者被命名为“优秀学员”.(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);(2)从甲班4名优秀学员中抽取2人,从乙班2名80分以下的学员中抽取1人,求三人平均分不低于90分的概率.2.某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.3.(2022北京,文17)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)5\n4.近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有35人.(1)求该组织的人数;(2)若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.5.某校为了解学生对正在进行的一项教学改革的态度,从500名高一学生和400名高二学生中按分层抽样的方式抽取了45名学生进行问卷调查,结果可以分成以下三类:支持、反对、无所谓,调查结果统计如下:支持无所谓反对高一年级18x2高二年级106y(1)①求出表中的x,y的值;②从反对的同学中随机选取2人进一步了解情况,求恰好抽取高一、高二各1人的概率;(2)根据表格统计的数据,完成下面的2×2列联表,并判断是否有90%的把握认为持支持与就读年级有关.(不支持包括无所谓和反对)高一年级高二年级总计支持不支持总计附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k0)0.100.050.01k02.7063.8416.6355\n5\n专题对点练20答案1.解(1)甲班学员的平均分为88.1;乙班学员的平均分为89.0.(2)所有抽取情况为:92,94,78;92,94,79;92,106,78;92,106,79;92,108,78;92,108,79;94,106,78;94,106,79;94,108,78;94,108,79;106,108,78;106,108,79.总共有12种.这12种情况中,平均分不低于90分的情况有10种.所以三人平均分不低于90分的概率为1012=56.2.解(1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个,则所求事件的概率为P=315=15.(2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个,则所求事件的概率为P=.3.解(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为502000=0.025.(2)(方法一)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故估计所求概率为1-3722000=0.814.(方法二)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).由古典概型概率公式,得P(B)=16282000=0.814.(3)第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.4.解(1)由题意,得第2组的人数为35=5×0.07×n,得到n=100,故该组织有100人.(2)第3组的人数为0.06×5×100=30,第4组的人数为0.04×5×100=20,第5组的人数为0.02×5×100=10,所以第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组3060×6=3;第4组2060×6=2;第5组1060×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人.(3)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C1,则从6名志愿者中抽取2名志愿者有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种.其中第3组的3名志愿者A1,A2,A3至少有一名志愿者被抽中的有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12种.则第3组至少有1名志愿者被抽中的概率为1215=45.5.解(1)①由题可得x=5,y=4.②假设高一持反对的编号为A1,A2,高二持反对的编号为B1,B2,B3,B4,则选取两人的所有结果为(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A2,B1),(A2,B2),(A2,B3),(A2,B4),(B1,B2),(B1,B3),(B1,B4),(B2,B3),(B2,B4),(B3,B4).∴恰好抽取高一、高二各1人包含8个事件,∴所求概率P=815.5\n(2)列联表如图:高一年级高二年级总计支 持181028不支持71017总 计252045K2=45×(180-70)228×17×25×20=2.288<2.706.故没有90%的把握认为持支持与就读年级有关.5
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)