首页

2022版高考数学二轮复习专题六统计专题突破练19统计与概率文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/10

2/10

剩余8页未读,查看更多内容需下载

专题突破练19 统计与概率1.某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),…,[80,90],并整理得到如下频率分布直方图:(1)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;(2)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;(3)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.2.(2022河南六市联考一,文18)高三一班、二班各有6名学生参加学校组织的高中数学竞赛选拔考试,成绩如茎叶图所示.(1)若一班、二班6名学生的平均分相同,求x值;(2)若将竞赛成绩在[60,75),[75,85),[85,100]内的学生在学校推优时,分别赋1分,2分,3分,现在一班的6名参赛学生中取两名,求推优时这两名学生赋分的和为4分的概率.10\n3.近年来,我国许多省市雾霾天气频发,为增强市民的环境保护意识,某市面向全市征召n名义务宣传志愿者,成立环境保护宣传组织.现把该组织的成员按年龄分成5组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示,已知第2组有35人.(1)求该组织的人数;(2)若在第3,4,5组中用分层抽样的方法抽取6名志愿者参加某社区的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该组织决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第3组至少有1名志愿者被抽中的概率.4.(2022山东潍坊一模,文19)某公司共有10条产品生产线,不超过5条生产线正常工作时,每条生产线每天纯利润为1100元,超过5条生产线正常工作时,超过的生产线每条纯利润为800元,原生产线利润保持不变.未开工的生产线每条每天的保养等各种费用共100元.用x表示每天正常工作的生产线条数,用y表示公司每天的纯利润.(1)写出y关于x的函数关系式,并求出纯利润为7700元时工作的生产线条数.(2)为保证新开的生产线正常工作,需对新开的生产线进行检测,现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数=14,标准差s=2,绘制如图所示的频率分布直方图,以频率值作为概率估计值.10\n为检测该生产线生产状况,现从加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率)①P(-s<X<+s)≥0.6826②P(-2s<X<+2s)≥0.9544③P(-3s<X<+3s)≥0.9974评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线.试判断该生产线是否需要检修.5.某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽取了n人,回答问题统计结果如图表所示.组 号分 组回答正确的人数回答正确的人数占本组的比例第1组[15,25)50.5第2组[25,35)a0.9第3组[35,45)27x第4组[45,55)b0.36第5组[55,65)3y10\n(1)分别求出a,b,x,y的值;(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.6.(2022北京卷,文17)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)10\n7.为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽查了50人,他们年龄的频数分布及支持“生育二胎放开”人数如下表:年  龄[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]频  数510151055支  持“生育二胎”4512821(1)由以上统计数据填写下面的2×2列联表,并问能否在犯错误的概率不超过0.01的前提下认为以45岁为分界点对“生育二胎放开”政策的支持度有差异?年龄不低于45岁的人数年龄低于45岁的人数合计支 持不支持合 计(2)若对年龄在[5,15)的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”政策的概率是多少?参考数据:P(K2≥k0)0.0500.0100.001k03.8416.63510.828K2=,其中n=a+b+c+d.10\n8.(2022湖南衡阳一模,文19)空气质量主要受污染物排放量及大气扩散等因素的影响,某市环保监测站2022年1月连续10天(从左到右对应1号至10号)采集该市某地平均风速及空气中污染物的日均浓度数据,制成散点图如下图所示.(1)同学甲从这10天中随机抽取连续5天的一组数据,计算回归直线方程,试求连续5天的一组数据中恰好同时包含污染物日均浓度最大与最小值的概率;(2)现有30名学生,每人任取5天数据,并已对应计算出30个不同的回归直线方程,且30组数据中包含污染物日均浓度最值的有15组,现采用这30个回归方程对某一天平均风速下的污染物日均浓度进行预测,若预测值与实测值差的绝对值小于2,则称之为“拟合效果好”,否则为“拟合效果不好”,学生通过检验已经获得了下列2×2列联表的部分信息,请你进一步补充完善2×2列联表,并分析是否有95%以上的把握认为拟合效果与选取数据是否包含污染物日均浓度最值有关.拟合效果好拟合效果不好合计数据包含最值5数据不包含最值4合计参考数据:P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828K2=(其中n=a+b+c+d).10\n参考答案专题突破练19 统计与概率1.解(1)根据频率分布直方图可知,样本中分数不小于70的频率为(0.02+0.04)×10=0.6,所以样本中分数小于70的频率为1-0.6=0.4.所以从总体的400名学生中随机抽取一人,其分数小于70的概率估计为0.4.(2)根据题意,样本中分数不小于50的频率为(0.01+0.02+0.04+0.02)×10=0.9,分数在区间[40,50)内的人数为100-100×0.9-5=5.所以总体中分数在区间[40,50)内的人数估计为400×=20.(3)由题意可知,样本中分数不小于70的学生人数为(0.02+0.04)×10×100=60,所以样本中分数不小于70的男生人数为60×=30.所以样本中的男生人数为30×2=60,女生人数为100-60=40,男生和女生人数的比例为60∶40=3∶2.所以根据分层抽样原理,总体中男生和女生人数的比例估计为3∶2.2.解(1)由93+90+x+81+73+77+61=90+94+84+72+76+63,得x=4.(2)由题意知一班赋3,2,1分的学生各有2名,设赋3分的学生为A1,A2,赋2分的学生为B1,B2,赋1分的学生为C1,C2,则从6人中抽取两人的基本事件为A1A2,A1B1,A1B2,A1C1,A1C2,A2B1,A2B2,A2C1,A2C2,B1B2,B1C1,B1C2,B2C1,B2C2,C1C2共15种,其中赋分的和为4分的有5种,∴这两名学生赋分的和为4的概率为P=.3.解(1)由题意,得第2组的人数为35=5×0.07×n,得到n=100,故该组织有100人.(2)第3组的人数为0.06×5×100=30,第4组的人数为0.04×5×100=20,第5组的人数为0.02×5×100=10,所以第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组×6=3;第4组×6=2;第5组×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人.(3)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B210\n,第5组的1名志愿者为C1,则从6名志愿者中抽取2名志愿者有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种.其中第3组的3名志愿者A1,A2,A3至少有一名志愿者被抽中的有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),共有12种.则第3组至少有1名志愿者被抽中的概率为.4.解(1)由题意知:当x≤5时,y=1100x-100×(10-x)=1200x-1000,当5<x≤10时,y=1100×5+800×(x-5)-100×(10-x)=900x+500,∴y=当y=7700时,由900x+500=7700,得x=8,即8条生产线正常工作.(2)μ=14,σ=2,由频率分布直方图得:∴P(12<X<16)=(0.29+0.11)×2=0.8>0.6826,P(10<X<18)=0.8+(0.04+0.03)×2=0.94<0.9544,P(8<X<20)=0.94+(0.015+0.005)×2=0.98<0.9974,∵不满足至少两个不等式,∴该生产线需检修.5.解(1)第1组人数为5÷0.5=10,所以n=10÷0.1=100;第2组人数为100×0.2=20,所以a=20×0.9=18;第3组人数为100×0.3=30,所以x=27÷30=0.9;第4组人数为100×0.25=25,所以b=25×0.36=9;第5组人数为100×0.15=15,所以y=3÷15=0.2.(2)第2,3,4组回答正确的人数比为18∶27∶9=2∶3∶1,所以第2,3,4组每组应各依次抽取2人、3人、1人.(3)记抽取的6人中,第2组的记为a1,a2,第3组的记为b1,b2,b3,第4组的记为c,则从6人中随机抽取2人的所有可能的情况有15种,它们是(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c),(b1,b2),(b1,b3),(b1,c),(b2,b3),(b2,c),(b3,c),其中第2组至少有1人的情况有9种,它们是(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,c),(a2,b1),(a2,b2),(a2,b3),(a2,c).故所求概率P=.6.解(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000.第四类电影中获得好评的电影部数是200×0.25=50,故所求概率为=0.025.(2)(方法一)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.110\n=56+10+45+50+160+51=372.故估计所求概率为1-=0.814.(方法二)设“随机选取1部电影,这部电影没有获得好评”为事件B.没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628(部).由古典概型概率公式,得P(B)==0.814.(3)第五类电影的好评率增加0.1,第二类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大.点睛本题主要考查概率与统计知识,属于易得分题,应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A;第二步,分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;第三步,利用公式P(A)=求出事件A的概率.7.解(1)2×2列联表如下:年龄不低于45岁的人数年龄低于45岁的人数合计支 持32932不支持71118合 计104050K2=≈6.27<6.635,所以在犯错误的概率不超过0.01的前提下不能认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.(2)设年龄在[5,15)中支持“生育二胎放开”政策的4人分别为a,b,c,d,不支持“生育二胎放开”政策的1人记为M,则从年龄在[5,15)的被调查人中随机选取两人所有可能的结果有(a,b),(a,c),(a,d),(a,M),(b,c),(b,d),(b,M),(c,d),(c,M),(d,M),共10种.设“恰好这两人都支持‘生育二胎放开’政策”为事件A,则事件A所有可能的结果有(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6种,故P(A)=.所以对年龄在[5,15)的被调查人中随机选取两人进行调查时,恰好这两人都支持“生育二胎放开”政策的概率为.8.解(1)记第i天监测数据为Ai(i=1,2,…,10),由图象易知A4的日均浓度最大,A5的日均浓度最小.10\n从这10天中随机抽取一组连续5天的数据包含的基本事件有:(A1,A2,A3,A4,A5),(A2,A3,A4,A5,A6),(A3,A4,A5,A6,A7),(A4,A5,A6,A7,A8),(A5,A6,A7,A8,A9),(A6,A7,A8,A9,A10),共6种.记事件A“数据中恰好同时包含污染物日均浓度最大与最小值”,包含的基本事件有:(A1,A2,A3,A4,A5),(A2,A3,A4,A5,A6),(A3,A4,A5,A6,A7),(A4,A5,A6,A7,A8),共4种.故连续5天的数据中恰好同时包含污染物日均浓度最值的概率P(A)=.(2)依题意,完成2×2列联表如下所示.拟合效果好拟合效果不好合计数据包含最值51015数据不包含最值11415合计161430由公式K2=,计算得K2=≈4.821.由参考数据可知,4.821>3.841,故有95%以上的把握说拟合效果与选取数据是否包含污染物日均浓度最值有关.10

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 14:42:40 页数:10
价格:¥3 大小:248.50 KB
文章作者:U-336598

推荐特供

MORE