【三维设计】2022届高考数学一轮复习 教师备选作业 第九章 第一节 分类加法计数原理与分步乘法计数原理 理
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第九章第一节分类加法计数原理与分步乘法计数原理一、选择题1.现有4种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )A.24种B.30种C.36种D.48种2.有A、B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,现在要从三名工人中选2名分别去操作以上车床,不同的选派方法有( )A.6种B.5种C.4种D.3种3.计划在4个体育馆举办排球、篮球、足球3个项目的比赛,每个项目的比赛只能安排在一个体育馆进行,则在同一个体育馆比赛的项目不超过2项的安排方案共有( )A.24种B.36种C.42种D.60种4.将1,2,3,4,5,6,7,8,9这9个数字填在如图的9个空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法数为( )34A.4B.6C.9D.125.三边长均为整数,且最大边长为11的三角形的个数为( )A.25B.26C.36D.376.如图,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案的种数为( )A.180B.240C.360D.420-5-\n二、填空题7.由数字0,1,2,3,4,5组成的奇偶数字相间且无重复数字的六位数的个数是________.8.只用1,2,3三个数字组成一个四位数,规定这三个数字必须同时使用,且同一数字不能相邻出现,这样的四位数有________个.9.如图所示的几何体是由一个正三棱锥P-ABC与一个正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不染色),要求相邻的面均不同色,则不同的染色方案共有______种.三、解答题10.某电视台连续播放6个广告,其中有3个不同的商业广告、两个不同的世博会宣传广告、一个公益广告,要求最后播放的不能是商业广告,且世博会宣传广告与公益广告不能连续播放,两个世博会宣传广告也不能连续播放,则有多少种不同的播放方式?11.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有多少种不同的选法?12.用n种不同的颜色为下列两块广告牌着色(如图甲、乙),要求在①②③④四个区域中相邻(有公共边界)的区域不用同一颜色.(1)若n=6,则为甲图着色的不同方法共有多少种;(2)若为乙图着色时共有120种不同的方法,求n的值.-5-\n详解答案一、选择题1.解析:共有4×3×2×2=48种着色方法.答案:D2.解析:若选甲、乙二人,包括甲操作A车床,乙操作B车床,或甲操作B车床,乙操作A车床,共有2种选派方法;若选甲、丙二人,则只有甲操作B车床,丙操作A车床这一种选派方法;若选乙、丙二人,则只有乙操作B车床,丙操作A车床这一种选派方法,故共有2+1+1=4(种)不同的选派方法.答案:C3.解析:每个项目的比赛安排在任意一个体育馆进行,共有43=64种安排方案;三个项目都在同一个体育馆比赛,共有4种安排方案;所以在同一个体育馆比赛的项目不超过2项的安排方案共有60种.答案:D4.解析:如图所示,根据题意,1,2,9三个数字的位置是确定的,余下的数中,5只能在a,c位置,8只能在b,d位置,依(a,b,c,d)顺序,具体有(5,8,6,7),(5,6,7,8),(5,7,6,8),(6,7,5,8),(6,8,5,7),(7,8,5,6),合计6种.12a34bcd9答案:B5.解析:设另两边长分别为x、y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x=1,2,3,…,11,可有11个三角形;当y取10时,x=2,3,…,10,可有9个三角形;……;当y取6时,x只能取6,只有1个三角形.∴所求三角形的个数为11+9+7+5+3+1=36.答案:C-5-\n6.解析:本题中区域2,3,4,5地位相同(都与其他四个区域中的3个区域相邻),故应先种区域1,有5种栽种方案,再种区域2,有4种栽种方案,接着种区域3,有3种栽种方案,种区域4时应注意:区域2与4种同色花时,区域4有1种栽种方案,此时区域5有3种栽种方案;区域2与4种不同色花时,区域4有2种栽种方案,此时区域5有2种栽种方案,故共有5×4×3×(1×3+2×2)=420种栽种方案.答案:D二、填空题7.解析:分两种情况:当首位为偶数时有CCCC个,当首位为奇数时有CCCC个,因此总共有:CCCC+CCCC=60(个).答案:608.解析:由题意知,1,2,3中必有某一个数字重复使用2次,第一步:确定谁被使用2次,有3种方法;第二步:把这2个相等的数字放在四位数不相邻的两个位置上,也有3种方法;第三步:将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.答案:189.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱ABC-A1B1C1的三个侧面,共有C×C×C×C=3×2×1×2=12种不同的涂法.答案:12三、解答题10.解:用1、2、3、4、5、6表示广告的播放顺序,则完成这件事有3类方法.第一类:宣传广告与公益广告的播放顺序是2、4、6.分6步完成这件事共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1、4、6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1、3、6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.11.解:由题意得有1人既会英语又会日语,6人只会英语,2人只会日语.第一类:从只会英语的6人中选1人说英语,共有6种方法,则说日语的有2+1=3(种),此时共有6×3=18种;第二类:不从只会英语的6人中选1人说英语,则只有1种方法,则选会日语的有2种,此时共有1×2=2种;所以根据分类计数原理知共有18+2=20种选法.-5-\n12.解:(1)由分步乘法计数原理,对区域①②③④按顺序着色,共有6×5×4×4=480种方法.(2)与第(1)问的区别在于与④相邻的区域由2块变成了3块.同样利用分步乘法计数原理,得n(n-1)(n-2)(n-3)=120.所以(n2-3n)(n2-3n+2)=120,即(n2-3n)2+2(n2-3n)-12×10=0,所以n2-3n-10=0,n2-3n+12=0(舍去),解得n=5,n=-2(舍去).-5-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)