【三维设计】2022届高考数学一轮复习 教师备选作业 第六章 第三节 二元一次不等式(组)与简单的线性规划问题 理
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第六章第三节二元一次不等式(组)与简单的线性规划问题一、选择题1.若实数x,y满足不等式组则3x+4y的最小值是( )A.13 B.15C.20D.282.已知向量a=(x+z,3),b=(2,y-z),且a⊥b,若x,y满足不等式|x|+|y|≤1,则z的取值范围为( )A.[-2,2]B.[-2,3]C.[-3,2]D.[-3,3]3.若不等式组,所表示的平面区域被直线y=kx+分为面积相等的两部分,则k的值是( )A.B.C.D.4.已知O是坐标原点,点A(-1,1).若点M(x,y)为平面区域上的一个动点,则·的取值范围是( )A.[-1,0]B.[0,1]C.[0,2]D.[-1,2]5.已知实数x,y满足,若z=ax+y的最大值为3a+9,最小值为3a-3,则实数a的取值范围为( )A.a≥1B.a≤-1C.-1≤a≤1D.a≥1或a≥-16.若变量x,y满足约束条件则z=x+2y的最小值为( )A.-8B.-6C.0D.12二、填空题7.在平面直角坐标系中,不等式组表示的平面区域的外接圆的方程为________.8.已知实数x,y满足(a∈R),若目标函数z=x+3y只有当-6-\n时取得最大值,则实数a的取值范围是________.9.已知实数x,y满足约束条件,则z=的最小值为________.三、解答题10.已知▱ABCD的三个顶点为A(-1,2),B(3,4),C(4,-2),点(x,y)在▱ABCD的内部,求z=2x-5y的取值范围.11.由约束条件所确定的平面区域的面积S=f(t),试求f(t)的表达式.12.某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元.那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?详解答案一、选择题1.解析:不等式组表示的可行域如图所示,根据目标函数z=3x+4y的几何意义容易求得,当x=3,y=1时,z有最小值13.-6-\n答案:A2.解析:因为a⊥b,所以a·b=0,所以2x+3y=z,不等式|x|+|y|≤1可转化为,由图可得其对应的可行域为边长为,以点(1,0),(-1,0),(0,1),(0,-1)为顶点的正方形,结合图象可知当直线2x+3y=z过点(0,-1)时z有最小值-3,当过点(0,1)时z有最大值3.所以z的取值范围为[-3,3].答案:D3.解析:由图可知,线性规划区域为△ABC边界及内部,y=kx+恰过A(0,),y=kx+将区域平均分成面积相等两部分,故过BC的中点D(,),=k×+,k=.答案:A4.解析:平面区域如图中阴影部分所示的△BDN,N(0,2),D(1,1),设点M(x,y),因点A(-1,1),则z=·=-x+y,由图可知;当目标函数z=-x+y过点D时,zmin=-1+1=0;当目标函数z=-x+y过点N时,zmax=0+2=2,故z的取值范围为[0,2],即·的取值范围为[0,2].答案:C5.解析:作出x,y满足的可行域,如图阴影部分所示,则z在点A处取得最大值,在点C处取得最小值.又kBC=-1,kAB=1,∴-1≤-a≤1,即-1≤a≤1.答案:C6.解析:根据得可行域如图中阴影部分所示:根据z=x+2y得y=-+,平移直线y=-得过M点时取得最小值.根据得,则zmin=4+2×(-5)=-6.-6-\n答案:B二、填空题7.解析:不等式组表示的平面区域如图中阴影部分所示.易知△ABC为等腰直角三角形,A(2,2),B(1,1),C(1,2),因此△ABC的外接圆的圆心为(,),半径为=.所以所求外接圆的方程为(x-)2+(y-)2=.答案:(x-)2+(y-)2=8.解析:在平面直角坐标系中画出不等式组所表示的可行域,其中直线x-ay-1=0经过定点(1,0)且斜率为,结合图形可知,只有当>0,即a>0时,目标函数z=x+3y才能在点(1,0)处取得最大值(如图(1));若<0,则可行域变为开放的区域,目标函数z=x+3y不存在最大值(如图(2)).所以实数a的取值范围是a>0.答案:(0,+∞)9.解析:作出不等式组所表示的可行域(图略),z==22x·2y=22x+y,令ω=2x+y,可求得ω=2x+y的最小值是-2,所以z=的最小值为2-2=.答案:三、解答题10.解:由题可知,平行四边形ABCD的点D的坐标为(0,-4),点(x,y)在平行四边形内部,如图,所以在D(0,-4)处目标函数z=2x-5y取得最大值为20,在点B(3,4)处目标函数z=2x-5y取得最小值为-14,由题知点(x,y)在平行四边形内部,所以端点取不到,故z=2x-5y的取值范围是(-14,20).11.解:由约束条件所确定的平面区域是五边形ABCEP,如图所示,其面积S=f(t)=S△OPD-S△AOB-S△ECD,而S△OPD=×1×2=1.-6-\nS△OAB=t2,S△ECD=(1-t)2,所以S=f(t)=1-t2-(1-t)2=-t2+t+.12.解:法一:设需要预订满足营养要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得:z=2.5x+4y,且x,y满足即作出线性约束条件所表示的可行域,如图所示,z在可行域的四个顶点A(9,0),B(4,3),C(2,5),D(0,8)处的值分别是zA=2.5×9+4×0=22.5,zB=2.5×4+4×3=22,zC=2.5×2+4×5=25,zD=2.5×0+4×8=32.比较之,zB最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.法二:设需要预订满足营养要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意得:z=2.5x+4y,且x,y满足即让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.-6-\n-6-
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)