首页

【师说 高中全程复习构想】(新课标)2022届高考数学 10.4 统计案例练习

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

【师说高中全程复习构想】(新课标)2022届高考数学10.4统计案例练习一、选择题1.为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算K2≈0.99,根据这一数据分析,下列说法正确的是(  )A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革有关系C.有99%的把握认为电视栏目是否优秀与改革有关系D.没有理由认为电视栏目是否优秀与改革有关系答案:D2.变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则(  )A.r2<r1<0 B.0<r2<r1C.r2<0<r1D.r2=r1解析:对于变量Y与X而言,Y随X的增大而增大,故Y与X正相关,即r1>0;对于变量V与U而言,V随U的增大而减小,故V与U负相关,即r2<0,所以有r2<0<r1.故选C.答案:C3.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由K2=算得,K2=≈7.8.附表:P(K2≥k)0.0500.0100.001k3.8416.63510.828参照附表,得到的正确结论是(  )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析:根据独立性检验的思想方法,正确选项为A.答案:A4.下列是一个2×2列联表y1y2总计x1a2173x222527总计b465\n则表中a、b处的值分别为(  )A.94、96B.52、50C.52、54D.54、52解析:∵a+21=73,∴a=52.又∵a+2=b,∴b=54.答案:C5.如图5个(x,y)数据,去掉D(3,10)后,下列说法错误的是(  )A.相关系数r变大B.残差平方和变大C.相关指数R2变大D.解释变量x与预报变量y的相关性变强解析:在二维回归分析中,r2=R2,R2越接近1,拟合效果越好,残差平方和越小.答案:B6.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程=x+必过(,);④在一个2×2列联表中,由计算得K2=13.079,则有99.9%的把握确认这两个变量间有关系.其中错误的个数是(  )本题可以参考独立性检验临界值表:P(K2≥k)0.50.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.5357.87910.828A.0B.1C.2D.3解析:一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x的系数具备直线斜率的功能,对于回归方程=3-5x,当x增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程=x+必过点(,),③正确;因为K2=13.079>10.828,故有99.9%的把握确认这两个变量有关系,④正确.故选B.答案:B二、填空题7.考察棉花种子经过处理跟得病之间的关系得到如下表数据: 种子处理种子未处理合计5\n得病32101133不得病61213274合计93314407根据以上数据,我们可以得到的结论是__________.解析:K2=≈0.164<0.455,所以没有足够证据说明棉花种子经过处理跟是否生病有关,即棉花种子经过处理跟是否生病无关.答案:棉花种子经过处理与是否得病之间无关8.在一项打鼾与患心脏病的调查中,共调查了1671人,经过计算K2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是__________的(填“有关”或“无关”).解析:K2>10.828,有99.9%的把握说打鼾与患心脏病有关.答案:有关9.若两个分类变量x和y的列联表为:y1y2x1515x24010则x与y之间有关系的概率约为__________.解析:K2=≈18.822,查表知P(K2≥10.828)≈0.001,∴x与y之间有关系的概率约为1-0.001=0.999.答案:0.999三、解答题10.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K2=解析:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为=14%.5\n(2)K2=≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.11.为了比较注射A,B两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,每组100只,其中一组注射药物A,另一组注射药物B.下表1和表2分别是注射药物A和B后的试验结果.(疱疹面积单位:mm2)表1:注射药物A后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)频数30402010表2:注射药物B后皮肤疱疹面积的频数分布表疱疹面积[60,65)[65,70)[70,75)[75,80)[80,85)频数1025203015(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;(2)完成下面2×2列联表,并回答能否有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.表3:疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物Aa=b=注射药物Bc=d=合计n=附:K2=解析:(1)5\n可以看出注射药物A后的疱疹面积的中位数在65至70之间,而注射药物B后的疱疹面积的中位数在70至75之间,所以注射药物A后疱疹面积的中位数小于注射药物B后疱疹面积的中位数.(2)疱疹面积小于70mm2疱疹面积不小于70mm2合计注射药物Aa=70b=30100注射药物Bc=35d=65100合计10595n=200K2=≈24.56.由于K2>10.828,所以有99.9%的把握认为“注射药物A后的疱疹面积与注射药物B后的疱疹面积有差异”.5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-26 00:23:52 页数:5
价格:¥3 大小:598.05 KB
文章作者:U-336598

推荐特供

MORE