首页

【步步高】2022届高考数学一轮复习 1.2.3 直线与平面的位置关系(二)备考练习 苏教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

【苏教版】【步步高】2022届高考数学一轮复习备考练习:第一章1.2.3 直线与平面的位置关系(二)一、基础过关1.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC的形状为________三角形.2.如图①所示,在正方形SG1G2G3中,E、F分别是边G1G2、G2G3的中点,D是EF的中点,现沿SE、SF及EF把这个正方形折成一个几何体(如图②使G1、G2、G3三点重合于一点G),则下列结论中成立的有________(填序号).①SG⊥面EFG;②SD⊥面EFG;③GF⊥面SEF;④GD⊥面SEF.3.△ABC的三条边长分别是5、12、13,点P到三点的距离都等于7,那么P到平面ABC的距离为______.4.如图所示,PA⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为________.5.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).6.P为△ABC所在平面外一点,O为P在平面ABC内的射影.(1)若P到△ABC三边距离相等,且O在△ABC的内部,则O是△ABC的________心;(2)若PA⊥BC,PB⊥AC,则O是△ABC的______心;(3)若PA,PB,PC与底面所成的角相等,则O是△ABC的________心.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.-4-\n8.如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,E、F分别是AB、PC的中点,PA=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9.线段AB在平面α的同侧,A、B到α的距离分别为3和5,则AB的中点到α的距离为________.10.直线a和b在正方体ABCD-A1B1C1D1的两个不同平面内,使a∥b成立的条件是________.(只填序号)①a和b垂直于正方体的同一个面;②a和b在正方体两个相对的面内,且共面;③a和b平行于同一条棱;④a和b在正方体的两个面内,且与正方体的同一条棱垂直.11.在正方体ABCD-A1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是________.12.如图所示,在正方体ABCD—A1B1C1D1中,M是AB上一点,N是A1C的中点,MN⊥平面A1DC.求证:(1)MN∥AD1;(2)M是AB的中点.三、探究与拓展13.如图所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(1)求证:MN⊥平面A1BC;(2)求直线BC1和平面A1BC所成的角的大小.-4-\n答案1.直角2.①3.4.45.A1C1⊥B1C1(或∠A1C1B1=90°)6.(1)内 (2)垂 (3)外7.证明 在平面B1BCC1中,∵E、F分别是B1C1、B1B的中点,∴△BB1E≌△CBF,∴∠B1BE=∠BCF,∴∠BCF+∠EBC=90°,∴CF⊥BE,又AB⊥平面B1BCC1,CF⊂平面B1BCC1,∴AB⊥CF,AB∩BE=B,∴CF⊥平面EAB.8.证明 (1)∵PA⊥底面ABCD,∴CD⊥PA.又矩形ABCD中,CD⊥AD,且AD∩PA=A,∴CD⊥平面PAD,∴CD⊥PD.(2)取PD的中点G,连结AG,FG.又∵G、F分别是PD、PC的中点,∴GF綊CD,∴GF綊AE,∴四边形AEFG是平行四边形,∴AG∥EF.∵PA=AD,G是PD的中点,∴AG⊥PD,∴EF⊥PD,∵CD⊥平面PAD,AG⊂平面PAD.∴CD⊥AG.∴EF⊥CD.∵PD∩CD=D,∴EF⊥平面PCD.9.410.①②③11.(1)45° (2)30° (3)90°12.证明 (1)∵ADD1A1为正方形,-4-\n∴AD1⊥A1D.又∵CD⊥平面ADD1A1,∴CD⊥AD1.∵A1D∩CD=D,∴AD1⊥平面A1DC.又∵MN⊥平面A1DC,∴MN∥AD1.(2)连结ON,在△A1DC中,A1O=OD,A1N=NC.∴ON綊CD綊AB,∴ON∥AM.又∵MN∥OA,∴四边形AMNO为平行四边形,∴ON=AM.∵ON=AB,∴AM=AB,∴M是AB的中点.13.(1)证明 如图所示,由已知BC⊥AC,BC⊥CC1,得BC⊥平面ACC1A1.连结AC1,则BC⊥AC1.由已知,可知侧面ACC1A1是正方形,所以A1C⊥AC1.又BC∩A1C=C,所以AC1⊥平面A1BC.因为侧面ABB1A1是正方形,M是A1B的中点,连结AB1,则点M是AB1的中点.又点N是B1C1的中点,则MN是△AB1C1的中位线,所以MN∥AC1.故MN⊥平面A1BC.(2)解 如图所示,因为AC1⊥平面A1BC,设AC1与A1C相交于点D,连结BD,则∠C1BD为直线BC1和平面A1BC所成的角.设AC=BC=CC1=a,则C1D=a,BC1=a.在Rt△BDC1中,sin∠C1BD==,所以∠C1BD=30°,故直线BC1和平面A1BC所成的角为30°.-4-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 15:29:23 页数:4
价格:¥3 大小:205.88 KB
文章作者:U-336598

推荐特供

MORE