首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第30练 椭圆问题中最值得关注的几类基本题型
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第30练 椭圆问题中最值得关注的几类基本题型
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/7
2
/7
剩余5页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第30练 椭圆问题中最值得关注的几类基本题型题型一 利用椭圆的几何性质解题例1 如图,焦点在x轴上的椭圆+=1的离心率e=,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,求·的最大值和最小值.破题切入点 本题主要考查椭圆的几何性质及其应用,解题的关键是表示出·,根据椭圆的性质确定变量的取值范围.解 设P点坐标为(x0,y0).由题意知a=2,∵e==,∴c=1,∴b2=a2-c2=3.所求椭圆方程为+=1.∴-2≤x0≤2,-≤y0≤.又F(-1,0),A(2,0),=(-1-x0,-y0),=(2-x0,-y0),∴·=x-x0-2+y=x-x0+1=(x0-2)2.当x0=2时,·取得最小值0,当x0=-2时,·取得最大值4.题型二 直线与椭圆相交问题例2 已知直线l过椭圆8x2+9y2=72的一个焦点,斜率为2,l与椭圆相交于M、N两点,求弦|MN|的长.破题切入点 根据条件写出直线l的方程与椭圆方程联立,用弦长公式求出.解 由得11x2-18x-9=0.由根与系数的关系,得xM+xN=,-7-\nxM·xN=-.由弦长公式|MN|=|xM-xN|=·==.题型三 点差法解题,设而不求思想例3 已知椭圆+y2=1,求斜率为2的平行弦的中点轨迹方程.破题切入点 设出弦的两端点,利用点差法求解.解 设弦的两端点分别为M(x1,y1),N(x2,y2),MN的中点为R(x,y),则x+2y=2,x+2y=2,两式相减并整理可得,=-=-,①将=2代入式①,得所求的轨迹方程为x+4y=0(-<x<).总结提高 (1)关于线段长的最值问题一般有两个方法:一是借助图形,由几何图形中量的关系求最值,二是建立函数关系求最值或用不等式来求最值.(2)直线和椭圆相交问题:①常用分析一元二次方程解的情况,仅有“Δ”还不够,还要用数形结合思想.②弦的中点、弦长等,利用根与系数关系式,注意验证“Δ”.(3)当涉及平行弦的中点轨迹,过定点的弦的中点轨迹,过定点且被定点平分的弦所在直线方程,用“点差法”来求解.1.“2<m<6”是“方程+=1表示椭圆”的________条件.答案 必要不充分解析 若+=1表示椭圆,则有所以2<m<6且m≠4,故“2<m<6”是“方程+=1表示椭圆”的必要不充分条件.2.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,点N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是________.答案 椭圆解析 点P在线段AN的垂直平分线上,故PA=PN.又AM是圆的半径,所以PM+PN=PM+PA=AM=6>MN,由椭圆定义知,P的轨迹是椭圆.3.已知椭圆中心在原点,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且PF1,F1F2,PF2成等差数列,则椭圆方程为________.-7-\n答案 +=1解析 设椭圆的标准方程为+=1(a>b>0).由点(2,)在椭圆上知+=1.又PF1,F1F2,PF2成等差数列,则PF1+PF2=2F1F2,即2a=2·2c,=.又c2=a2-b2,联立得a2=8,b2=6.4.(2022·大纲全国改编)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点.若△AF1B的周长为4,则C的方程为________.答案 +=1解析 由e=,得=.①又△AF1B的周长为4,由椭圆定义,得4a=4,得a=,代入①得c=1,所以b2=a2-c2=2,故C的方程为+=1.5.(2022·福建改编)设P,Q分别为圆x2+(y-6)2=2和椭圆+y2=1上的点,则P,Q两点间的最大距离是________.答案 6解析 如图所示,设以(0,6)为圆心,以r为半径的圆的方程为x2+(y-6)2=r2(r>0),与椭圆方程+y2=1联立得方程组,消掉x2得9y2+12y+r2-46=0.令Δ=122-4×9(r2-46)=0,解得r2=50,即r=5.由题意易知P,Q两点间的最大距离为r+=6.-7-\n6.如图,F1,F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A,B分别是C1,C2在第二、四象限的公共点.若四边形AF1BF2为矩形,则C2的离心率是________.答案 解析 设AF1=m,AF2=n,则有m+n=4,m2+n2=12,因此12+2mn=16,所以mn=2,而(m-n)2=(2a)2=(m+n)2-4mn=16-8=8,因此双曲线的a=,c=,则有e==.7.椭圆+=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2.若AF1,F1F2,F1B成等比数列,则此椭圆的离心率为________.答案 解析 由椭圆的性质可知:AF1=a-c,F1F2=2c,F1B=a+c,又AF1,F1F2,F1B成等比数列,故(a-c)(a+c)=(2c)2,可得=.8.(2022·辽宁)已知椭圆C:+=1,点M与C的焦点不重合.若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则AN+BN=________.答案 12解析 椭圆+=1中,a=3.如图,设MN的中点为D,则DF1+DF2=2a=6.∵D,F1,F2分别为MN,AM,BM的中点,∴BN=2DF2,AN=2DF1,∴AN+BN=2(DF1+DF2)=12.-7-\n9.(2022·江西)过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为________.答案 解析 设A(x1,y1),B(x2,y2),则∴+=0,∴=-·.∵=-,x1+x2=2,y1+y2=2,∴-=-,∴a2=2b2.又∵b2=a2-c2,∴a2=2(a2-c2),∴a2=2c2,∴=.10.(2022·安徽)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左,右焦点,过点F1的直线交椭圆E于A,B两点.若AF1=3F1B,AF2⊥x轴,则椭圆E的方程为________.答案 x2+y2=1解析 设点B的坐标为(x0,y0).∵x2+=1,∴F1(-,0),F2(,0).∵AF2⊥x轴,∴A(,b2).∵AF1=3F1B,∴=3,∴(-2,-b2)=3(x0+,y0).∴x0=-,y0=-.∴点B的坐标为.将B代入x2+=1,得b2=.∴椭圆E的方程为x2+y2=1.11.(2022·课标全国Ⅱ)设F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.-7-\n(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且MN=5F1N,求a,b.解 (1)根据c=及题设知M(c,),=,2b2=3ac.将b2=a2-c2代入2b2=3ac,解得=,=-2(舍去).故C的离心率为.(2)由题意,得原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a.①由MN=5F1N,得DF1=2F1N.设N(x1,y1),由题意知y1<0,则即代入C的方程,得+=1.②将①及c=代入②得+=1.解得a=7,b2=4a=28,故a=7,b=2.12.(2022·江苏)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,顶点B的坐标为(0,b),连结BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连结F1C.(1)若点C的坐标为,且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.解 设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2==a.又BF2=,故a=.因为点C在椭圆上,-7-\n所以+=1,解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.故e2=,因此e=.-7-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
全国通用2022版高考数学考前三个月复习冲刺专题7第30练椭圆问题中最值得关注的基本题型理
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题三 函数与导数 第13练 高考对于导数几何意义的必会题型
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第34练 圆锥曲线中的探索性问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第33练 直线与圆锥曲线问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第32练 与抛物线相关的热点问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第31练 双曲线的渐近线和离心率
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第29练 与直线和圆有关的最值问题
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题7 解析几何 第28练 直线和圆的位置关系
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题5 数列 第25练 数列求和问题大全
【考前三个月】(江苏专用)2022高考数学 高考必会题型 专题2 不等式与线性规划 第7练 基本初等函数问题
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:16:16
页数:7
价格:¥3
大小:168.26 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划