首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
【走向高考】2022届高三数学一轮基础巩固 第5章 第2节 平面向量基本定理及向量的坐标表示(含解析)新人教B版
【走向高考】2022届高三数学一轮基础巩固 第5章 第2节 平面向量基本定理及向量的坐标表示(含解析)新人教B版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
【走向高考】2022届高三数学一轮基础巩固第5章第2节平面向量基本定理及向量的坐标表示新人教B版一、选择题1.(文)(2022·郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线且方向相反,则m的值为( )A.-1 B.1C.-2D.2[答案] A[解析] 设a=λb(λ<0),即m=λ且1=λm.解得m=±1,由于λ<0,∴m=-1.[点评] 1.注意向量共线与向量垂直的坐标表示的区别,若a=(x1,y1),b=(x1,y2),则a∥b⇔x1y2-x2y1=0,当a,b都是非零向量时,a⊥b⇔x1x2+y1y2=0,同时还要注意a∥b与=不等价.2.证明共线(或平行)问题的主要依据:(1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行).(2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b.(3)对于向量a,b,若|a·b|=|a|·|b|,则a与b共线.要注意向量平行与直线平行是有区别的.(理)(2022·荆州质检)已知向量a=(2,3),b=(-1,2),若ma+nb与a-2b共线,则=( )A.-2 B.2C.-D.[答案] C[解析] 由向量a=(2,3),b=(-1,2)得ma+nb=(2m-n,3m+2n),a-2b=(4,-1),因为ma+nb与a-2b共线,所以(2m-n)×(-1)-(3m+2n)×4=0,整理得=-.2.(2022·山东青岛期中)设a,b都是非零向量,下列四个条件中,一定能使+=0成立的是( )A.a=-bB.a∥bC.a=2bD.a⊥b[答案] A[解析] 由题意得=-,而表示与a同向的单位向量,-表示与b反向的单位向量,则a与b反向.而当a=-b时,a与b反向,可推出题中条件.易知B,C,D都不正确,故选A.-10-\n[警示] 由于对单位向量、相等向量以及共线向量的概念理解不到位从而导致错误,特别对于这些概念:(1)单位向量,要知道它的模长为1,方向同a的方向;(2)对于任意非零向量a来说,都有两个单位向量,一个与a同向,另一个与a反向;(3)平面内的所有单位向量的起点都移到原点,则单位向量的终点的轨迹是个单位圆;(4)相等向量的大小不仅相等,方向也必须相同,而相反向量大小相等,方向是相反的;(5)相等向量和相反向量都是共线向量,但共线向量不一定是相等向量,也有可能是相反向量.3.(2022·广州执信中学期中)在△ABC中,点P在BC上,且=2,点Q是AC的中点,若=(4,3),=(1,5),则=( )A.(-2,7)B.(-6,21)C.(2,-7)D.(6,-21)[答案] B[解析] 由条件知,=2-=2(1,5)-(4,3)=(-2,7),∵=2=(-4,14),∴=+=(-6,21).4.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为( )A.平行四边形B.矩形C.梯形D.菱形[答案] C[解析] ∵=++=-8a-2b=2,∴四边形ABCD为梯形.5.(文)(2022·德州模拟)设=x+y,x,y∈R且A,B,C三点共线(该直线不过点O),则x+y=( )A.-1B.1C.0D.2[答案] B[解析] 如图,设=λ,则=+=+λ=+λ(-)-10-\n=+λ-λ=(1-λ)+λ∴x=1-λ,y=λ,∴x+y=1.[点评] 用已知向量来表示另外一些向量是用向量解题的基本功.在进行向量运算时,要尽可能将它们转化到平行四边形或三角形中,以便使用向量的运算法则进行求解.充分利用平面几何的性质,可把未知向量用已知向量表示出来.(理)(2022·安庆二模)已知a,b是不共线的两个向量,=xa+b,=a+yb(x,y∈R),若A,B,C三点共线,则点P(x,y)的轨迹是( )A.直线B.双曲线C.圆D.椭圆[答案] B[解析] ∵A,B,C三点共线,∴存在实数λ,使=λ.则xa+b=λ(a+yb)⇒⇒xy=1,故选B.6.(2022·湖北武汉调研)如图所示的方格纸中有定点O,P,Q,E,F,G,H,则+=( )A.B.C.D.[答案] D[解析] 由平行四边形法则和图示可知,选D.二、填空题-10-\n7.已知a=(2,-3),b=(sinα,cos2α),α∈,若a∥b,则tanα=________.[答案] -[解析] ∵a∥b,∴=,∴2cos2α=-3sinα,∴2sin2α-3sinα-2=0,∵|sinα|≤1,∴sinα=-,∵α∈,∴cosα=,∴tanα=-.8.(文)(2022·宜春质检)如图所示,在△ABC中,H为BC上异于B,C的任一点,M为AH的中点,若=λ+μ,则λ+μ=________.[答案] [分析] 由B,H,C三点共线可用向量,来表示.[解析] 由B,H,C三点共线,可令=x+(1-x),又M是AH的中点,所以==x+(1-x)·,又=λ+μ.所以λ+μ=x+(1-x)=.[点评] 应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算,共线向量定理的应用起着至关重要的作用.当基底确定后,任一向量的表示都是唯一的.(理)(2022·河北二调)在△ABC中,AC=1,AB=2,A=,过点A作AP⊥BC于点P,且=λ+μ,则λμ=________.[答案] [解析] 由题意知·=2×1×cos=-1,∵AP⊥BC,∴·=0,即(λ+μ)·(-)=0,∴(λ-μ)·-λ2+μ2=0,即μ-λ-4λ+μ=0,∴μ=λ,①∵P,B,C三点共线,∴λ+μ=1,②由①②联立解得,即λμ=×=.-10-\n9.(文)已知G是△ABC的重心,直线EF过点G且与边AB、AC分别交于点E、F,=α,=β,则+=______.[答案] 3[解析] 连结AG并延长交BC于D,∵G是△ABC的重心,∴==(+),设=λ,∴-=λ(-),∴=+,∴+=+,∴∴∴+=3.(理)在△ABC中,过中线AD的中点E任作一条直线分别交AB、AC于M、N两点,若=x,=y,则4x+y的最小值为________.[答案] [解析] 如图所示,由题意知=(+),=,又M,E,N三点共线,所以=λ+(1-λ)(其中0<λ<1),又=x,=y,所以(+)=λx+(1-λ)y,因此有解得x=,y=,令=t,∴t>1,则4x+y=+=t+=(t-1)++≥,当且仅当t=,即λ=时取得等号.三、解答题10.(文)已知O(0,0)、A(2,-1)、B(1,3)、=+t,求(1)t为何值时,点P在x轴上?点P在y轴上?点P在第四象限?-10-\n(2)四点O、A、B、P能否成为平行四边形的四个顶点,说明你的理由.[解析] (1)=+t=(t+2,3t-1).若点P在x轴上,则3t-1=0,∴t=;若点P在y轴上,则t+2=0,∴t=-2;若点P在第四象限,则,∴-2<t<.(2)=(2,-1),=(-t-1,-3t+4).若四边形OABP为平行四边形,则=.∴无解.∴四边形OABP不可能为平行四边形.同理可知,当t=1时,四边形OAPB为平行四边形,当t=-1时,四边形OPAB为平行四边形.(理)已知向量a=(1,2),b=(cosα,sinα),设m=a+tb(t为实数).(1)若α=,求当|m|取最小值时实数t的值;(2)若a⊥b,问:是否存在实数t,使得向量a-b和向量m的夹角为,若存在,请求出t;若不存在,请说明理由.[解析] (1)∵α=,∴b=(,),a·b=,∴|m|====,∴当t=-时,|m|取到最小值,最小值为.(2)由条件得cos=,∵|a-b|==,|a+tb|==,(a-b)·(a+tb)=5-t,∴=,且t<5,∴t2+5t-5=0,∴存在t=满足条件.一、选择题11.平面上有四个互异的点A、B、C、D,满足(-)·(-)=0,则三角形ABC是( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形-10-\n[答案] B[解析] (-)·(-)=(-)·(+)=(-)·=(-)·(+)=||2-||2=0,故||=||,即△ABC是等腰三角形.12.如图,△ABC中,AD=DB,AE=EC,CD与BE交于F,设=a,=b,=xa+yb,则(x,y)为( )A.B.C.D.[答案] C[解析] 设=λ,∵E、D分别为AC、AB的中点,∴=+=-a+b,=+=(b-a)+λ(a-b)=a+(1-λ)b,∵与共线,∴=,∴λ=,∴=+=b+=b+=a+b,故x=,y=.13.已知平行四边形ABCD,点P为四边形内部或者边界上任意一点,向量=x+y,则“0≤x≤,0≤y≤”的概率是( )-10-\nA.B.C.D.[答案] A[解析] 根据平面向量基本定理,点P只要在如图所示的区域AB1C1D1内即可,这个区域的面积是整个四边形面积的×=,故所求的概率是.14.(文)(2022·浙江十校联考)称d(a,b)=|a-b|为两个向量a,b间的“距离”.若向量a,b满足:①|b|=1;②a≠b;③对任意的t∈R,恒有d(a,tb)≥d(a,b),则( )A.a⊥bB.b⊥(a-b)C.a⊥(a-b)D.(a+b)⊥(a-b)[答案] B[解析] 由于d(a,b)=|a-b|,所以对任意的t∈R,恒有d(a,tb)≥d(a,b),即|a-tb|≥|a-b|,由图示可知,向量a-tb的模的最小值是a-b的模,故a-b与b垂直,故选B.(理)(2022·浙江)记max{x,y}=,min{x,y}=,设a,b为平面向量,则( )A.min{|a+b|,|a-b|}≤min{|a|,|b|}B.min{|a+b|,|a-b|}≥min{|a|,|b|}C.max{|a+b|2,|a-b|2}≤|a|2+|b|2D.max{|a+b|2,|a-b|2}≥|a|2+|b|2[答案] D[解析] 由新定义知,max{x,y}是x与y中的较大值,min{x,y}是x,y中的较小值,据此可知A、B是比较|a+b|与|a-b|中的较小值与|a|与|b|中的较小值的大小,由平行四边形法则知其大小与〈a,b〉有关,故A、B错;当〈a,b〉为锐角时,|a+b|>|a-b|,此时|a+b|2>|a|2+|b|2.当〈a,b〉为钝角时,|a+b|<|a-b|,此时|a+b|2<|a|2+|b|2<|a-b|2.当〈a,b〉=90°时,|a+b|=|a-b|,此时|a+b|2=|a|2+|b|2.故选D.二、填空题15.(2022·广东江门质检)设a,b是两个不共线向量,=2a+pb,=a+b,=a-2b,若A、B、D三点共线,则实数p的值是________.[答案] -1[解析] ∵A、B、D三点共线,∴与共线,∵=2a+pb,=+=2a-b,-10-\n∴存在实数λ,使2a+pb=λ(2a-b),∵a与b不共线,∴λ=1,p=-1.16.(2022·广雅中学月考)梯形ABCD中,AB∥CD,AB=2CD,M、N分别是CD、AB的中点,设=a,=b.若=ma+nb,则=________.[答案] -4[解析] =++=-a-b+a=a-b,∴m=,n=-1,∴=-4.三、解答题17.(2022·福建三明检测)已知向量a=(sinα,-2),b=(1,cosα),其中α∈(0,).(1)向量a,b能平行吗?请说明理由.(2)若a⊥b,求sinα和cosα的值.(3)在(2)的条件下,若cosβ=,β∈(0,),求α+β的值.[解析] (1)向量a,b不能平行.若平行,需sinαcosα+2=0,即sin2α=-4,而-4∉[-1,1],∴向量a,b不能平行.(2)∵a⊥b,∴a·b=sinα-2cosα=0,即sinα=2cosα.又∵sin2α+cos2α=1,∴4cos2α+cos2α=1,即cos2α=,∴sin2α=.又α∈(0,),∴sinα=,cosα=.(3)由(2)知sinα=,cosα=,cosβ=,β∈(0,),得sinβ=.则cos(α+β)=cosαcosβ-sinαsinβ=×-×=-.又α+β∈(0,π),则α+β=.18.(2022·宁阳一中检测)如图所示,△ABC中,点M是BC的中点,点N在边AC上,且AN=2NC,AM与BN相交于点P,求APPM的值.-10-\n[解析] 设=e1,=e2,则=+=-3e2-e1,=2e1+e2,∵A、P、M和B、P、N分别共线,∴存在λ、μ∈R,使=λ=-λe1-3λe2,=μ=2μe1+μe2.故=-=(λ+2μ)e1+(3λ+μ)e2,而=+=2e1+3e2,∴由平面向量基本定理得∴∴=,即APPM=41.-10-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022年新教材高考数学一轮复习第6章平面向量复数2平面向量基本定理及向量的坐标表示课件(人教版)
2022年高考数学一轮复习第5章平面向量数系的扩充与复数的引入2平面向量基本定理及向量的坐标表示课件(人教A版)
2022年高考数学新教材一轮复习第6章平面向量复数2平面向量基本定理及向量的坐标表示课件(新人教版)
高考数学总复习 5-2平面向量基本定理及向量的坐标表示 新人教B版
2023高考数学一轮复习课时规范练25平面向量基本定理及向量的坐标表示文含解析新人教A版20230402177
福建专用2022高考数学一轮复习课时规范练25平面向量基本定理及向量的坐标表示理新人教A版
【走向高考】2022届高三数学一轮基础巩固 第5章 第3节 平面向量的数量积(含解析)新人教B版
【走向高考】2022届高三数学一轮基础巩固 第5章 第2节 平面向量基本定理及向量的坐标运算(含解析)北师大版
【走向高考】2022届高三数学一轮基础巩固 第5章 第2节 平面向量基本定理及向量的坐标表示(含解析)新人教A版
【优化指导】2022高考数学总复习 第4章 第2节 平面向量的基本定理及坐标表示课时演练 新人教A版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-26 00:13:48
页数:10
价格:¥3
大小:166.86 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划