首页

全国通用2022版高考数学考前三个月复习冲刺专题4第18练三角函数的图象与性质理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/16

2/16

剩余14页未读,查看更多内容需下载

第18练 三角函数的图象与性质[题型分析·高考展望] 三角函数的图象与性质是高考中对三角函数部分考查的重点和热点,主要包括三个大的方面:三角函数图象的识别,三角函数的简单性质以及三角函数图象的平移、伸缩变换.考查题型既有选择题、填空题,也有解答题,难度一般为低中档,在二轮复习中应强化该部分的训练,争取对该类试题会做且不失分.常考题型精析题型一 三角函数的图象例1 (1)(2022·课标全国Ⅰ)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为(  )A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z(2)(2022·湖北)某实验室一天的温度(单位:℃)随时间t(单位:h)的变化近似满足函数关系:f(t)=10-cost-sint,t∈[0,24).①求实验室这一天上午8时的温度;②求实验室这一天的最大温差.   16\n点评 (1)画三角函数图象用“五点法”,由图象求函数解析式逆用“五点法”是比较好的方法.(2)对三角函数图象主要确定下列信息:①周期;②最值;③对称轴;④与坐标轴交点;⑤单调性;⑥与标准曲线的对应关系.变式训练1 已知函数f(x)=2sin(ωx+φ)(其中ω>0,|φ|<)的最小正周期是π,且f(0)=,则(  )A.ω=,φ=B.ω=,φ=C.ω=2,φ=D.ω=2,φ=(2)已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<,ω>0)的图象的一部分如图所示,则该函数的解析式为____________.题型二 三角函数的简单性质例2 设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间上的最大值和最小值.    16\n点评 解决此类问题首先将已知函数式化为y=Asin(ωx+φ)+k(或y=Acos(ωx+φ)+k)的形式,再将ωx+φ看成θ,利用y=sinθ(或y=cosθ)的单调性、对称性等性质解决相关问题.变式训练2 (2022·福建)已知函数f(x)=cosx(sinx+cosx)-.(1)若0<α<,且sinα=,求f(α)的值;(2)求函数f(x)的最小正周期及单调递增区间.         题型三 三角函数图象的变换例3 已知函数f(x)=10sincos+10cos2.(1)求函数f(x)的最小正周期;16\n(2)将函数f(x)的图象向右平移个单位长度,再向下平移a(a>0)个单位长度后得到函数g(x)的图象,且函数g(x)的最大值为2.①求函数g(x)的解析式;②证明:存在无穷多个互不相同的正整数x0,使得g(x0)>0.         点评 对于三角函数图象变换问题,平移变换规则是“左加右减上加下减”并且在变换过程中只变换其中的自变量x,要把这个系数提取后再确定变换的单位和方向,当两个函数的名称不同时,首先要将函数名称统一,其次把ωx+φ写成ω(x+),最后确定平移的单位和方向.伸缩变换时注意叙述为“变为原来的”这个字眼,变换的倍数要根据横向和纵向,要加以区分.变式训练3 (2022·山东)已知向量a=(m,cos2x),b=(sin2x,n),函数f(x)=a·b16\n,且y=f(x)的图象过点(,)和点(,-2).(1)求m,n的值;(2)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.         高考题型精练1.(2022·四川)下列函数中,最小正周期为π且图象关于原点对称的函数是(  )A.y=cosB.y=sinC.y=sin2x+cos2xD.y=sinx+cosx2.(2022·福建)将函数y=sinx的图象向左平移个单位,得到函数y=f(x)的图象,则下列说法正确的是(  )A.y=f(x)是奇函数B.y=f(x)的周期为π16\nC.y=f(x)的图象关于直线x=对称D.y=f(x)的图象关于点(-,0)对称3.已知函数f(x)=Atan(ωx+φ)(ω>0,|φ|<),y=f(x)的部分图象如图所示,则f()等于(  )A.-B.-1C.D.14.(2022·辽宁)将函数y=3sin(2x+)的图象向右平移个单位长度,所得图象对应的函数(  )A.在区间[,]上单调递减B.在区间[,]上单调递增C.在区间[-,]上单调递减D.在区间[-,]上单调递增5.将函数f(x)=-4sin的图象向右平移φ个单位,再将图象上每一点的横坐标缩短到原来的倍,所得图象关于直线x=对称,则φ的最小正值为(  )A.B.πC.πD.6.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则将y=f(x)的图象向右平移个单位后,得到的图象的解析式为(  )16\nA.y=sin2xB.y=cos2xC.y=sinD.y=sin7.若函数f(x)=cos(2x+φ)的图象关于点成中心对称,且-<φ<,则函数y=f为(  )A.奇函数且在上单调递增B.偶函数且在上单调递增C.偶函数且在上单调递减D.奇函数且在上单调递减8.(2022·湖北)函数f(x)=4cos2cos-2sinx-|ln(x+1)|的零点个数为________.9.函数y=cos(2x+φ)(-π≤φ<π)的图象向右平移个单位后,与函数y=sin的图象重合,则φ=____________.10.(2022·湖北)某同学用“五点法”画函数f(x)=Asin(ωx+φ)在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx+φ0π2πxAsin(ωx+φ)05-50(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求y=g(x)的图象离原点O最近的对称中心.  16\n   11.(2022·重庆)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f()=(<α<),求cos(α+)的值. 12.(2022·重庆)已知函数f(x)=sinsinx-cos2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在上的单调性.答案精析第18练 三角函数的图象与性质16\n常考题型精析例1 D[由图象知,周期T=2=2,∴=2,∴ω=π.由π×+φ=+2kπ,k∈Z,不妨取φ=,∴f(x)=cos.由2kπ<πx+<2kπ+π,k∈Z,得2k-<x<2k+,k∈Z,∴f(x)的单调递减区间为,k∈Z.故选D.](2)解 ①f(8)=10-cos(×8)-sin(×8)=10-cos-sin=10-×(-)-=10.故实验室上午8时的温度为10℃.②因为f(t)=10-2(cost+sint)=10-2sin(t+),又0≤t<24,所以≤t+<,-1≤sin(t+)≤1.当t=2时,sin(t+)=1;当t=14时,sin(t+)=-1.于是f(t)在[0,24)上的最大值为12,最小值为8.故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.变式训练1 (1)D(2)f(x)=2sin解析 (1)∵f(x)=2sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,16\n∴T==π,ω=2.∵f(0)=2sinφ=,即sinφ=(|φ|<),∴φ=.(2)观察图象可知:A=2且点(0,1)在图象上,∴1=2sin(ω·0+φ),即sinφ=.∵|φ|<,∴φ=.又∵π是函数的一个零点,且是图象递增穿过x轴形成的零点,∴ω+=2π,∴ω=2.∴f(x)=2sin.例2 解 (1)f(x)=-sin2ωx-sinωxcosωx=-×-sin2ωx=cos2ωx-sin2ωx=-sin.依题意知=4×,ω>0,所以ω=1.(2)由(1)知f(x)=-sin.当π≤x≤时,≤2x-≤.所以-≤sin≤1.所以-1≤f(x)≤.故f(x)在区间上的最大值和最小值分别为,-1.变式训练2 解 (1)因为0<α<,sinα=,所以cosα=.所以f(α)=×(+)-=.(2)因为f(x)=sinxcosx+cos2x-16\n=sin2x+-=sin2x+cos2x=sin(2x+),所以T==π.由2kπ-≤2x+≤2kπ+,k∈Z,得kπ-≤x≤kπ+,k∈Z.所以f(x)的单调递增区间为[kπ-,kπ+],k∈Z.例3 解 (1)因为f(x)=10sincos+10cos2=5sinx+5cosx+5=10sin+5,所以函数f(x)的最小正周期T=2π.(2)①将f(x)的图象向右平移个单位长度后得到y=10sinx+5的图象,再向下平移a(a>0)个单位长度后得到g(x)=10sinx+5-a的图象.又已知函数g(x)的最大值为2,所以10+5-a=2,解得a=13.所以g(x)=10sinx-8.②要证明存在无穷多个互不相同的正整数x0,使得g(x0)>0,就是要证明存在无穷多个互不相同的正整数x0,使得10sinx0-8>0,即sinx0>.由<知,存在0<α0<,使得sinα0=.由正弦函数的性质可知,当x∈(α0,π-α0)时,均有sinx>.因为y=sinx的周期为2π,所以当x∈(2kπ+α0,2kπ+π-α0)(k∈Z)时,均有sinx>.因为对任意的整数k,(2kπ+π-α0)-(2kπ+α0)=π-2α0>>1,16\n所以对任意的正整数k,都存在正整数x0∈(2kπ+α0,2kπ+π-α0),使得sinx0>.亦即,存在无穷多个互不相同的正整数x0,使得g(x0)>0.变式训练3 解 (1)由题意知f(x)=a·b=msin2x+ncos2x.因为y=f(x)的图象过点(,)和(,-2),所以即解得(2)由(1)知f(x)=sin2x+cos2x=2sin(2x+).由题意知g(x)=f(x+φ)=2sin(2x+2φ+).设y=g(x)的图象上符合题意的最高点为(x0,2),由题意知x+1=1,所以x0=0,即到点(0,3)的距离为1的最高点为(0,2).将其代入y=g(x)得sin(2φ+)=1,因为0<φ<π,所以φ=,因此g(x)=2sin(2x+)=2cos2x.由2kπ-π≤2x≤2kπ,k∈Z得kπ-≤x≤kπ,k∈Z,所以函数y=g(x)的单调递增区间为[kπ-,kπ],k∈Z.高考题型精练1.A[y=cos=-sin2x,最小正周期T==π,且为奇函数,其图象关于原点对称,故A正确;y=sin=cos2x,最小正周期为π,且为偶函数,其图象关于y轴对称,故B不正确;C,D均为非奇非偶函数,其图象不关于原点对称,故C,D不正确.]2.D[由题意知,f(x)=cosx,所以它是偶函数,A错;它的周期为2π,B错;它的对称轴是直线x=kπ,k∈Z,C错;它的对称中心是点,k∈Z,D对.]16\n3.C[由图象知,T==2(-)=,ω=2.由2×+φ=kπ,k∈Z,得φ=kπ-,k∈Z.又∵|φ|<,∴φ=.由Atan(2×0+)=1,知A=1,∴f(x)=tan(2x+),∴f()=tan(2×+)=tan=.]4.B[y=3sin(2x+)的图象向右平移个单位长度得到y=3sin[2(x-)+]=3sin(2x-π).令2kπ-≤2x-π≤2kπ+得kπ+≤x≤kπ+π,k∈Z,则y=3sin(2x-π)的增区间为[kπ+,kπ+π],k∈Z.令k=0得其中一个增区间为[,π],故B正确.画出y=3sin(2x-π)在[-,]上的简图,如图,可知y=3sin(2x-π)在[-,]上不具有单调性,故C,D错误.]5.B[依题意可得y=f(x)⇒y=-4sin[2(x-φ)+]=-4sin[2x-(2φ-)]⇒y=g(x)=-4sin[4x-(2φ-)],因为所得图象关于直线x=对称,所以g=±4,得φ=π+π(k∈Z),故选B.]6.D[由图象知A=1,T=-=,T=π,∴ω=2,由sin=1,|φ|<16\n得+φ=⇒φ=⇒f(x)=sin,则图象向右平移个单位后得到的图象的解析式为y=sin=sin.]7.D[因为函数f(x)=cos(2x+φ)的图象关于点成中心对称,则+φ=kπ+,k∈Z.即φ=kπ-,k∈Z,又-<φ<,则φ=-,则y=f=cos=cos=-sin2x,所以该函数为奇函数且在上单调递减.]8.2解析 f(x)=4cos2sinx-2sinx-|ln(x+1)|=2sinx·-|ln(x+1)|=sin2x-|ln(x+1)|,令f(x)=0,得sin2x=|ln(x+1)|.在同一坐标系中作出函数y=sin2x与函数y=|ln(x+1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f(x)有2个零点.9.解析 函数y=cos(2x+φ)向右平移个单位,得到y=sin,即y=sin向左平移个单位得到函数y=cos(2x+φ),y=sin向左平移个单位,得y=sin=sin=-sin=cos=cos,即φ=.10.解 (1)根据表中已知数据,解得A=5,ω=2,φ=-.数据补全如下表:ωx+φ0π2πxπAsin(ωx+φ)050-50且函数表达式为f(x)=5sin.16\n(2)由(1)知f(x)=5sin,因此g(x)=5sin=5sin.因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+=kπ,解得x=-,k∈Z.即y=g(x)图象的对称中心为,k∈Z,其中离原点O最近的对称中心为.11.解 (1)因为f(x)的图象上相邻两个最高点的距离为π,所以f(x)的最小正周期为T=π,从而ω==2.又因为f(x)的图象关于直线x=对称,所以2×+φ=kπ+,k=0,±1,±2,….由-≤φ<,得k=0,所以φ=-=-.(2)由(1)得f()=sin(2·-)=,所以sin(α-)=.由<α<,得0<α-<,所以cos(α-)===.所以cos(α+)=sinα=sin[(α-)+]=sin(α-)cos+cos(α-)sin=×+×16\n=.12.解 (1)f(x)=sinsinx-cos2x=cosxsinx-(1+cos2x)=sin2x-cos2x-=sin-,因此f(x)的最小正周期为π,最大值为.(2)当x∈时,0≤2x-≤π,从而当0≤2x-≤,即≤x≤时,f(x)单调递增,当≤2x-≤π,即≤x≤时,f(x)单调递减.综上可知,f(x)在上单调递增;在上单调递减.16

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:55:40 页数:16
价格:¥3 大小:103.02 KB
文章作者:U-336598

推荐特供

MORE