首页

全国通用2022版高考数学考前三个月复习冲刺专题7第32练与抛物线有关的热点问题理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/15

2/15

剩余13页未读,查看更多内容需下载

第32练 与抛物线有关的热点问题[题型分析·高考展望] 抛物线是三种圆锥曲线之一,应用广泛,是高考的重点考查对象,抛物线方程、几何性质、直线与抛物线结合的问题都是高考热点.考查形式有选择题、填空题也有解答题,小题难度一般为低中档层次,解答题难度为中档偏上.常考题型精析题型一 抛物线的定义及其应用例1 设P是抛物线y2=4x上的一动点,(1)求点P到A(-1,1)的距离与点P到直线x=-1的距离之和的最小值;(2)若B(3,2),抛物线的焦点为F,求|PB|+|PF|的最小值.      点评 与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.变式训练1 已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0等于(  )A.1B.2C.4D.8题型二 抛物线的标准方程及几何性质15\n例2 抛物线的顶点在原点,对称轴为y轴,它与圆x2+y2=9相交,公共弦MN的长为2,求该抛物线的方程,并写出它的焦点坐标与准线方程.     点评 (1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p的值,再进一步确定抛物线的焦点坐标和准线方程.(2)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程.变式训练2 (2022·福建)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA15\n相切的圆,必与直线GB相切.      题型三 直线和抛物线的位置关系例3 (2022·课标全国Ⅰ)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点,(1)当k=0时,分别求C在点M和N处的切线方程;(2)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由.    15\n点评 (1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.变式训练3 (2022·长春模拟)已知抛物线C:y=mx2(m>0),焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.(1)求抛物线C的焦点坐标;(2)若抛物线C上有一点R(xR,2)到焦点F的距离为3,求此时m的值;(3)是否存在实数m,使△ABQ是以Q为直角顶点的直角三角形?若存在,求出m的值;若不存在,说明理由.        高考题型精练15\n1.(2022·辽宁)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(  )A.B.C.D.2.(2022·浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )A.   B.C.   D.3.已知抛物线y2=2px(p>0)的焦点为F,P、Q是抛物线上的两个点,若△PQF是边长为2的正三角形,则p的值是(  )A.2±B.2+C.±1D.-14.(2022·课标全国Ⅱ)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为(  )A.B.C.D.5.已知抛物线y2=8x的准线为l,点Q在圆C:x2+y2+2x-8y+13=0上,记抛物线上任意一点P到直线l的距离为d,则d+|PQ|的最小值等于(  )A.3B.2C.4D.56.已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1,y1),B(x2,y2),则的值一定等于(  )A.-4B.415\nC.p2D.-p27.(2022·湖南)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a<b),原点O为AD的中点,抛物线y2=2px(p>0)经过C,F两点,则=________.8.已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B,若A=M,则p=________.9.过抛物线y2=2x的焦点F作直线交抛物线于A,B两点,若|AB|=,|AF|<|BF|,则|AF|=________.10.已知抛物线C的方程为y2=-8x,设过点N(2,0)的直线l的斜率为k,且与抛物线C相交于点S,T,若S,T两点只在第二象限内运动,线段ST的垂直平分线交x轴于Q点,则Q点横坐标的取值范围为________.11.(2022·安徽)如图,已知两条抛物线E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),过原点O的两条直线l1和l2,l1与E1,E2分别交于A1,A2两点,l2与E1,E2分别交于B1,B2两点.(1)证明:A1B1∥A2B2;(2)过O作直线l(异于l1,l2)与E1,E2分别交于C1,C2两点.记△A1B1C1与△A2B2C2的面积分别为S1与S2,求的值.  12.(2022·湖南)已知抛物线C1:x2=4y的焦点F也是椭圆C2:+=1(a>b15\n>0)的一个焦点.C1与C2的公共弦的长为2.过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向.(1)求C2的方程;(2)若|AC|=|BD|,求直线l的斜率.        15\n答案精析第32练 与抛物线有关的热点问题常考题型精析例1 解 (1)由于A(-1,1),F(1,0),P是抛物线上的任意一点,则|AP|+|PF|≥|AF|==,从而知点P到A(-1,1)的距离与点P到F(1,0)的距离之和的最小值为,所以点P到A(-1,1)的距离与P到直线x=-1的距离之和的最小值也为.(2)如图所示,自点B作BQ垂直于抛物线的准线于点Q,交抛物线于点P1,此时|P1Q|=|P1F|,那么|PB|+|PF|≥|P1B|+|P1Q|=|BQ|=4,即|PB|+|PF|的最小值为4.变式训练1 A解析 由题意知抛物线的准线为x=-.因为|AF|=x0,根据抛物线的定义可得x0+=|AF|=x0,解得x0=1.例2 解 由题意,得抛物线方程为x2=2ay(a≠0).设公共弦MN交y轴于A,N在y轴右侧,则|MA|=|AN|,而|AN|=.∵|ON|=3,∴|OA|==2,∴N(,±2).∵N点在抛物线上,∴5=2a·(±2),即2a=±,故抛物线的方程为x2=y或x2=-y.抛物线x2=y的焦点坐标为,准线方程为y=-.抛物线x2=-y的焦点坐标为,准线方程为y=.变式训练2 解 方法一 (1)由抛物线的定义得|AF|=2+.因为|AF|=3,即2+=3,解得p=2,所以抛物线E的方程为y2=4x.15\n(2)因为点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0,解得x=2或x=,从而B.又G(-1,0),所以kGA==,kGB==-.所以kGA+kGB=0,从而∠AGF=∠BGF,这表明点F到直线GA,GB的距离相等,故以F为圆心且与直线GA相切的圆必与直线GB相切.方法二 (1)同方法一.(2)设以点F为圆心且与直线GA相切的圆的半径为r.因为点A(2,m)在抛物线E:y2=4x上,所以m=±2,由抛物线的对称性,不妨设A(2,2).由A(2,2),F(1,0)可得直线AF的方程为y=2(x-1).由得2x2-5x+2=0.解得x=2或x=,从而B.又G(-1,0),故直线GA的方程为2x-3y+2=0.从而r==.又直线GB的方程为2x+3y+2=0.所以点F到直线GB的距离d===r.这表明以点F为圆心且与直线GA相切的圆必与直线GB相切.例3 解 (1)由题设可得M(2,a),N(-2,a),或M(-2,a),N(2,a).又y′=,故y=在x=2处的导数值为,C在点(2,a)处的切线方程为y-a=(x-2),即x-y-a=0.15\ny=在x=-2处的导数值为-,C在点(-2,a)处的切线方程为y-a=-(x+2),即x+y+a=0.故所求切线方程为x-y-a=0和x+y+a=0.(2)存在符合题意的点,证明如下:设P(0,b)为符合题意的点,M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为k1,k2.将y=kx+a代入C的方程得x2-4kx-4a=0.故x1+x2=4k,x1x2=-4a.从而k1+k2=+==.当b=-a时,有k1+k2=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以点P(0,-a)符合题意.变式训练3 解 (1)∵抛物线C:x2=y,∴它的焦点F(0,).(2)∵|RF|=yR+,∴2+=3,得m=.(3)存在,联立方程消去y得mx2-2x-2=0,依题意,有Δ=(-2)2-4×m×(-2)>0⇒m>-.设A(x1,mx),B(x2,mx),则(*)∵P是线段AB的中点,∴P(,),即P(,yP),∴Q(,).得=(x1-,mx-),=(x2-,mx-),若存在实数m,使△ABQ是以Q为直角顶点的直角三角形,则·=0,即(x1-)·(x2-)+(mx-)(mx-)=0,结合(*)化简得--+4=0,15\n即2m2-3m-2=0,∴m=2或m=-,而2∈(-,+∞),-∉(-,+∞).∴存在实数m=2,使△ABQ是以Q为直角顶点的直角三角形.高考题型精练1.D[抛物线y2=2px的准线为直线x=-,而点A(-2,3)在准线上,所以-=-2,即p=4,从而C:y2=8x,焦点为F(2,0).设切线方程为y-3=k(x+2),代入y2=8x得y2-y+2k+3=0(k≠0)①,由于Δ=1-4×(2k+3)=0,所以k=-2或k=.因为切点在第一象限,所以k=.将k=代入①中,得y=8,再代入y2=8x中得x=8,所以点B的坐标为(8,8),所以直线BF的斜率为=.]2.A[由图形可知,△BCF与△ACF有公共的顶点F,且A,B,C三点共线,易知△BCF与△ACF的面积之比就等于.由抛物线方程知焦点F(1,0),作准线l,则l的方程为x=-1.∵点A,B在抛物线上,过A,B分别作AK,BH与准线垂直,垂足分别为点K,H,且与y轴分别交于点N,M.由抛物线定义,得|BM|=|BF|-1,|AN|=|AF|-1.在△CAN中,BM∥AN,∴==.]3.A[依题意得F,设P,Q(y1≠y2).由抛物线定义及|PF|=|QF|,得+=+,∴y=y,∴y1=-y2.又|PQ|=2,因此|y1|=|y2|=1,点P.又点P位于该抛物线上,于是由抛物线的定义得|PF|=+=2,由此解得p=2±15\n,故选A.]4.D[由已知得焦点坐标为F(,0),因此直线AB的方程为y=(x-),即4x-4y-3=0.方法一 联立抛物线方程化简得4y2-12y-9=0,故|yA-yB|==6.因此S△OAB=|OF||yA-yB|=××6=.方法二 联立方程得x2-x+=0,故xA+xB=.根据抛物线的定义有|AB|=xA+xB+p=+=12,同时原点到直线AB的距离为h==,因此S△OAB=|AB|·h=.]5.A[如图所示,由题意,知抛物线y2=8x的焦点为F(2,0),连接PF,则d=|PF|.圆C的方程配方,得(x+1)2+(y-4)2=4,圆心为C(-1,4),半径r=2.d+|PQ|=|PF|+|PQ|,显然,|PF|+|PQ|≥|FQ|(当且仅当F,P,Q三点共线时取等号).而|FQ|为圆C上的动点Q到定点F的距离,显然当F,Q,C三点共线时取得最小值,最小值为|CF|-r=-2=5-2=3.]6.A[①若焦点弦AB⊥x轴,则x1=x2=,则x1x2=;②若焦点弦AB不垂直于x轴,可设AB:y=k(x-),联立y2=2px得k2x2-(k2p+2p)x+=0,15\n则x1x2=.则y1y2=-p2.故=-4.]7.+1解析 ∵正方形ABCD和正方形DEFG的边长分别为a,b,O为AD的中点,∴C(,-a),F(+b,b).又∵点C,F在抛物线y2=2px(p>0)上,∴解得=+1.8.2解析 如图,由AB的斜率为,知α=60°,又A=M,∴M为AB的中点.过点B作BP垂直准线l于点P,则∠ABP=60°,∴∠BAP=30°.∴==.∴M为焦点,即=1,∴p=2.9.解析 ∵+==2,|AB|=|AF|+|BF|=,|AF|<|BF|,∴|AF|=,|BF|=.10.(-∞,-6)解析 设S(x1,y1),T(x2,y2),由题意得直线ST的方程为y=k(x-2)(显然k≠0),与y2=-8x联立,得ky2+8y+16k=0,y1+y2=-,y1y2=16.因为直线l与抛物线C相交于S,T两点,所以Δ=64-64k2>0,再由y1>0,y2>0,则->0,故-1<k<0.又线段ST的中点坐标为,所以线段ST的垂直平分线方程为y+=-.令y=0,得Q点的横坐标为xQ=-2-<-6,故Q点横坐标的取值范围为(-∞,-6).11.(1)证明 设直线l1,l2的方程分别为y=k1x,y=k2x(k1,k2≠0),由15\n得A1,由得A2.同理可得B1,B2.所以==2p1.=(-,-)=2p2(-,-)故=,所以A1B1∥A2B2.(2)解 由(1)知A1B1∥A2B2,同理可得B1C1∥B2C2,C1A1∥C2A2,所以△A1B1C1∽△A2B2C2.因此=2.又由(1)中的=知=,故=.12.解 (1)由C1:x2=4y知其焦点F的坐标为(0,1).因为F也是椭圆C2的一个焦点,所以a2-b2=1.①又C1与C2的公共弦的长为2,C1与C2都关于y轴对称,且C1的方程为x2=4y,由此易知C1与C2的公共点的坐标为,所以+=1.②联立①,②得a2=9,b2=8.故C2的方程为+=1.(2)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4).因与同向,且|AC|=|BD|,所以=,从而x3-x1=x4-x2,即x1-x2=x3-x4,于是(x1+x2)2-4x1x2=(x3+x4)2-4x3x4.③15\n设直线l的斜率为k,则l的方程为y=kx+1.由得x2-4kx-4=0.而x1,x2是这个方程的两根,所以x1+x2=4k,x1x2=-4.④由得(9+8k2)x2+16kx-64=0.而x3,x4是这个方程的两根,所以x3+x4=-,x3x4=-,⑤将④,⑤代入③,得16(k2+1)=+,即16(k2+1)=,所以(9+8k2)2=16×9,解得k=±,即直线l的斜率为±.15

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:55:34 页数:15
价格:¥3 大小:154.87 KB
文章作者:U-336598

推荐特供

MORE