天津市2022年高考数学二轮复习专题能力训练16椭圆双曲线抛物线文
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
专题能力训练16 椭圆、双曲线、抛物线一、能力突破训练1.已知双曲线x2a2-y2b2=1(a>0,b>0)的焦距为25,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为( ) A.x24-y2=1B.x2-y24=1C.3x220-3y25=1D.3x25-3y220=1答案:A解析:∵双曲线x2a2-y2b2=1(a>0,b>0)的焦距为25,∴c=5.又∵该双曲线的渐近线与直线2x+y=0垂直,∴渐近线方程为y=12x.∴ba=12,即a=2b.∴a2=4b2.∴c2-b2=4b2.∴c2=5b2.∴5=5b2.∴b2=1.∴a2=c2-b2=5-1=4.故所求双曲线的方程为x24-y2=1.2.(2022全国Ⅰ,文5)已知F是双曲线C:x2-y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.13B.12C.23D.32答案:D解析:由c2=a2+b2=4,得c=2,所以点F的坐标为(2,0).将x=2代入x2-y23=1,得y=±3,所以PF=3.又点A的坐标是(1,3),故△APF的面积为12×3×(2-1)=32,故选D.3.已知O为坐标原点,F是椭圆C:x2a2+y2b2=1(a>b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为( )A.13B.12C.23D.34答案:A解析:由题意知,A(-a,0),B(a,0),根据对称性,不妨令P-c,b2a,设l:x=my-a,∴M-c,a-cm,E0,am.9\n∴直线BM:y=-a-cm(a+c)(x-a).又直线BM经过OE的中点,∴(a-c)a(a+c)m=a2m,解得a=3c.∴e=ca=13,故选A.4.(2022天津,文5)已知双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为( )A.x24-y212=1B.x212-y24=1C.x23-y2=1D.x2-y23=1答案:D解析:∵双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F(c,0),点A在双曲线的渐近线上,且△OAF是边长为2的等边三角形,不妨设点A在渐近线y=bax上,∴c=2,ba=tan60°,a2+b2=c2,解得a=1,b=3.所以双曲线的方程为x2-y23=1.故选D.5.已知点P为双曲线x216-y29=1右支上一点,点F1,F2分别为双曲线的左、右焦点,M为△PF1F2的内心.若S△PMF1=S△PMF2+8,则△MF1F2的面积为( )A.27B.10C.8D.6答案:B解析:设内切圆的半径为R,a=4,b=3,c=5.∵S△PMF1=S△PMF2+8,∴12(|PF1|-|PF2|)R=8,即aR=8,∴R=2.故S△MF1F2=12·2c·R=10.6.设双曲线x2a2-y2b2=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A,B两点,与双曲线的一个交点为P,设O为坐标原点.若OP=mOA+nOB(m,n∈R),且mn=29,则该双曲线的离心率为( )A.322B.355C.324D.98答案:C解析:在y=±bax中令x=c,得Ac,bca,Bc,-bca,在双曲线x2a2-y2b2=1中令x=c得Pc,±b2a.当点P的坐标为c,b2a时,由OP=mOA+nOB,得c=(m+n)c,b2a=mbca-nbca,则m+n=1,m-n=bc.9\n由m+n=1,mn=29,得m=23,n=13或m=13,n=23(舍去),∴bc=13,∴c2-a2c2=19,∴e=324.同理,当点P的坐标为c,-b2a时,e=324.故该双曲线的离心率为324.7.已知双曲线E:x2a2-y2b2=1(a>0,b>0).矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 . 答案:2解析:由题意不妨设AB=3,则BC=2.设AB,CD的中点分别为M,N,如图,则在Rt△BMN中,MN=2,故BN=BM2+MN2=322+22=52.由双曲线的定义可得2a=BN-BM=52-32=1,而2c=MN=2,所以双曲线的离心率e=2c2a=2.8.已知直线l1:x-y+5=0和l2:x+4=0,抛物线C:y2=16x,P是C上一动点,则点P到l1与l2距离之和的最小值为 . 答案:922解析:在同一坐标系中画出直线l1,l2和曲线C如图.9\nP是C上任意一点,由抛物线的定义知,|PF|=d2,∴d1+d2=d1+|PF|,显然当PF⊥l1,即d1+d2=|FM|时,距离之和取到最小值.∵|FM|=922,∴所求最小值为922.9.如图,已知抛物线C1:y=14x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解(1)由题意知直线PA的斜率存在,故可设直线PA的方程为y=k(x-t),由y=k(x-t),y=14x2消去y,整理得:x2-4kx+4kt=0,由于直线PA与抛物线相切,得k=t.因此,点A的坐标为(2t,t2).设圆C2的圆心为D(0,1),点B的坐标为(x0,y0),由题意知:点B,O关于直线PD对称,故y02=-x02t+1,x0t-y0=0,解得x0=2t1+t2,y0=2t21+t2.因此,点B的坐标为2t1+t2,2t21+t2.(2)由(1)知|AP|=t·1+t2和直线PA的方程tx-y-t2=0.点B到直线PA的距离是d=t21+t2.设△PAB的面积为S(t),所以S(t)=12|AP|·d=t32.10.如图,动点M与两定点A(-1,0),B(1,0)构成△MAB,且直线MA,MB的斜率之积为4,设动点M的轨迹为C.(1)求轨迹C的方程;(2)设直线y=x+m(m>0)与y轴相交于点P,与轨迹C相交于点Q,R,且|PQ|<|PR|,求|PR||PQ|9\n的取值范围.解(1)设M的坐标为(x,y),当x=-1时,直线MA的斜率不存在;当x=1时,直线MB的斜率不存在.于是x≠1,且x≠-1.此时,MA的斜率为yx+1,MB的斜率为yx-1.由题意,有yx+1·yx-1=4.整理,得4x2-y2-4=0.故动点M的轨迹C的方程为4x2-y2-4=0(x≠±1).(2)由y=x+m,4x2-y2-4=0消去y,可得3x2-2mx-m2-4=0.①对于方程①,其判别式Δ=(-2m)2-4×3(-m2-4)=16m2+48>0,而当1或-1为方程①的根时,m的值为-1或1.结合题设(m>0)可知,m>0,且m≠1.设Q,R的坐标分别为(xQ,yQ),(xR,yR),则xQ,xR为方程①的两根,因为|PQ|<|PR|,所以|xQ|<|xR|.因为xQ=m-2m2+33,xR=m+2m2+33,且Q,R在同一条直线上,所以|PR||PQ|=xRxQ=21+3m2+121+3m2-1=1+221+3m2-1.此时1+3m2>1,且1+3m2≠2,所以1<1+221+3m2-1<3,且1+221+3m2-1≠53,所以1<|PR||PQ|=xRxQ<3,且|PR||PQ|=xRxQ≠53.综上所述,|PR||PQ|的取值范围是1,53∪53,3.11.设椭圆x2a2+y23=1(a>3)的右焦点为F,右顶点为A.已知1|OF|+1|OA|=3e|FA|,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.解(1)设F(c,0).由1|OF|+1|OA|=3e|FA|,即1c+1a=3ca(a-c),可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为x24+y23=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(xB,yB),由方程组9\nx24+y23=1,y=k(x-2)消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=8k2-64k2+3,由题意得xB=8k2-64k2+3,从而yB=-12k4k2+3.由(1)知,F(1,0),设H(0,yH),有FH=(-1,yH),BF=9-4k24k2+3,12k4k2+3.由BF⊥HF,得BF·FH=0,所以4k2-94k2+3+12kyH4k2+3=0,解得yH=9-4k212k.因此直线MH的方程为y=-1kx+9-4k212k.设M(xM,yM),由方程组y=k(x-2),y=-1kx+9-4k212k消去y,解得xM=20k2+912(k2+1).在△MAO中,∠MOA=∠MAO⇔|MA|=|MO|,即(xM-2)2+yM2=xM2+yM2,化简得xM=1,即20k2+912(k2+1)=1,解得k=-64,或k=64.所以,直线l的斜率为-64或64.二、思维提升训练12.已知椭圆E:x2a2+y2b2=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点.若|AF|+|BF|=4,点M到直线l的距离不小于45,则椭圆E的离心率的取值范围是( )A.0,32B.0,34C.32,1D.34,1答案:A解析:如图,取椭圆的左焦点F1,连接AF1,BF1.由椭圆的对称性知四边形AF1BF是平行四边形,∴|AF|+|BF|=|AF1|+|AF|=2a=4.∴a=2.不妨设M(0,b),则|3×0-4b|32+42≥45,∴b≥1.∴e=ca=1-ba2≤1-122=32.又0<e<1,∴0<e≤32.故选A.13.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x答案:C9\n解析:设点M的坐标为(x0,y0),由抛物线的定义,得|MF|=x0+p2=5,则x0=5-p2.因为点F的坐标为p2,0,所以以MF为直径的圆的方程为(x-x0)·x-p2+(y-y0)y=0.将x=0,y=2代入得px0+8-4y0=0,即y022-4y0+8=0,解得y0=4.由y02=2px0,得16=2p5-p2,解得p=2或p=8.所以C的方程为y2=4x或y2=16x.故选C.14.(2022江苏,8)在平面直角坐标系xOy中,双曲线x23-y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是 . 答案:23解析:该双曲线的右准线方程为x=310=31010,两条渐近线方程为y=±33x,得P31010,3010,Q31010,-3010,又c=10,所以F1(-10,0),F2(10,0),四边形F1PF2Q的面积S=210×3010=23.15.(2022山东,文15)在平面直角坐标系xOy中,双曲线x2a2-y2b2=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为 . 答案:y=±22x解析:抛物线x2=2py的焦点F0,p2,准线方程为y=-p2.设A(x1,y1),B(x2,y2),则|AF|+|BF|=y1+p2+y2+p2=y1+y2+p=4|OF|=4·p2=2p.所以y1+y2=p.联立双曲线与抛物线方程得x2a2-y2b2=1,x2=2py,消去x,得a2y2-2pb2y+a2b2=0.所以y1+y2=2pb2a2=p,所以b2a2=12.所以该双曲线的渐近线方程为y=±22x.16.已知圆C:(x+1)2+y2=20,点B(1,0),点A是圆C上的动点,线段AB的垂直平分线与线段AC交于点P.(1)求动点P的轨迹C1的方程;(2)设M0,15,N为抛物线C2:y=x2上的一动点,过点N作抛物线C2的切线交曲线C1于P,Q9\n两点,求△MPQ面积的最大值.解(1)由已知可得,点P满足|PB|+|PC|=|AC|=25>2=|BC|,所以动点P的轨迹C1是一个椭圆,其中2a=25,2c=2.动点P的轨迹C1的方程为x25+y24=1.(2)设N(t,t2),则PQ的方程为y-t2=2t(x-t)⇒y=2tx-t2.联立方程组y=2tx-t2,x25+y24=1,消去y整理,得(4+20t2)x2-20t3x+5t4-20=0,有Δ=80(4+20t2-t4)>0,x1+x2=20t34+20t2,x1x2=5t4-204+20t2.而|PQ|=1+4t2×|x1-x2|=1+4t2×80(4+20t2-t4)4+20t2,点M到PQ的高为h=15+t21+4t2,由S△MPQ=12|PQ|h代入化简,得S△MPQ=510-(t2-10)2+104≤510×104=1305,当且仅当t2=10时,S△MPQ可取最大值1305.17.已知动点C是椭圆Ω:x2a+y2=1(a>1)上的任意一点,AB是圆G:x2+(y-2)2=94的一条直径(A,B是端点),CA·CB的最大值是314.(1)求椭圆Ω的方程.(2)已知椭圆Ω的左、右焦点分别为点F1,F2,过点F2且与x轴不垂直的直线l交椭圆Ω于P,Q两点.在线段OF2上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求实数m的取值范围;若不存在,请说明理由.解(1)设点C的坐标为(x,y),则x2a+y2=1.连接CG,由CA=CG+GA,CB=CG+GB=CG-GA,又G(0,2),CG=(-x,2-y),可得CA·CB=CG2-GA2=x2+(y-2)2-94=a(1-y2)+(y-2)2-94=-(a-1)y2-4y+a+74,其中y∈[-1,1].因为a>1,所以当y=42(1-a)≤-1,即1<a≤3时,取y=-1,得CA·CB有最大值-(a-1)+4+a+74=274,与条件矛盾;当y=42(1-a)>-1,即a>3时,9\nCA·CB的最大值是4(1-a)a+74-164(1-a),由条件得4(1-a)a+74-164(1-a)=314,即a2-7a+10=0,解得a=5或a=2(舍去).综上所述,椭圆Ω的方程是x25+y2=1.(2)设点P(x1,y1),Q(x2,y2),PQ的中点坐标为(x0,y0),则满足x125+y12=1,x225+y22=1,两式相减,整理,得y2-y1x2-x1=-x2+x15(y2+y1)=-x05y0,从而直线PQ的方程为y-y0=-x05y0(x-x0).又右焦点F2的坐标是(2,0),将点F2的坐标代入PQ的方程得-y0=-x05y0(2-x0),因为直线l与x轴不垂直,所以2x0-x02=5y02>0,从而0<x0<2.假设在线段OF2上存在点M(m,0)(0<m<2),使得以MP,MQ为邻边的平行四边形是菱形,则线段PQ的垂直平分线必过点M,而线段PQ的垂直平分线方程是y-y0=5y0x0(x-x0),将点M(m,0)代入得-y0=5y0x0(m-x0),得m=45x0,从而m∈0,85.9
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)