首页

湖南省高考数学第二轮复习 专题升级训练14 椭圆、双曲线、抛物线 文

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

专题升级训练14 椭圆、双曲线、抛物线(时间:60分钟 满分:100分)一、选择题(本大题共6小题,每小题6分,共36分)1.(2012·安徽安庆二模,2)在同一坐标系下,下列曲线中,右焦点与抛物线y2=4x的焦点重合的是(  ).A.+=1B.+=1C.-=1D.-=12.已知圆的方程为x2+y2=4,若抛物线过定点A(0,1),B(0,-1).且以该圆的切线为准线,则抛物线焦点的轨迹方程是(  ).A.+=1(y≠0)B.+=1(y≠0)C.+=1(x≠0)D.+=1(x≠0)3.(2012·湖南湘潭模拟,6)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(  ).A.18B.24C.36D.484.若直线mx+ny=4与圆x2+y2=4没有交点,则过点P(m,n)的直线与椭圆+=1的交点个数为(  ).A.至少1个B.2个C.1个D.0个5.已知点A,B是双曲线x2-=1上的两点,O为坐标原点,且满足·=0,则点O到直线AB的距离等于(  ).A.B.C.2D.26.(2012·山东潍坊3月模拟,10)直线4kx-4y-k=0与抛物线y2=x交于A,B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于(  ).A.B.2C.D.4二、填空题(本大题共3小题,每小题6分,共18分)7.(2012·江苏苏、锡、常、镇四市调研,8)已知点M与双曲线-=1的左,右焦点的距离之比为2∶3,则点M的轨迹方程为__________.8.已知抛物线y2=2px(p>0)上一点M(1,m),到其焦点的距离为5,双曲线x2-=1的左顶点为A,若双曲线的一条渐近线与直线AM垂直,则实数a=__________.9.连接抛物线x2=4y的焦点F与点M(1,0)所得的线段与抛物线交于点A,设点O为坐标原点,则△OAM的面积为__________.三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤)10.(本小题满分15分)(2012·河北邯郸一模,20)已知椭圆C:+=1(a>b>0)的短轴长等于焦距,椭圆C上的点到右焦点F的最短距离为-1.(1)求椭圆C的方程;(2)过点E(2,0)且斜率为k(k>0)的直线l与C交于M,N两点,P是点M关于x轴的对称点,证明:N,F,P三点共线.-5-\n11.(本小题满分15分)如图,椭圆C:+=1的焦点在x轴上,左、右顶点分别为A1,A,上顶点为B.抛物线C1,C2分别以A,B为焦点,其顶点均为坐标原点O,C1与C2相交于直线y=x上一点P.(1)求椭圆C及抛物线C1,C2的方程;(2)若动直线l与直线OP垂直,且与椭圆C交于不同两点M,N,已知点Q(-,0),求·的最小值.12.(本小题满分16分)(2012·安徽安庆二模,20)已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C:+=1(a>b>0)的离心率为e=,直线l被圆O截得的弦长与椭圆的长轴长相等.(1)求椭圆C的方程;(2)过点(3,0)作直线l,与椭圆C交于A,B两点,设=+(O是坐标原点),是否存在这样的直线l,使四边形OASB的对角线长相等?若存在,求出直线l的方程;若不存在,说明理由.-5-\n参考答案一、选择题1.D2.C 解析:过点A,B,O(O为坐标原点)分别向抛物线的准线作垂线,垂足为A1,B1,O1,设抛物线的焦点F(x,y),则|FA|=|AA1|,|FB|=|BB1|,∴|FA|+|FB|=|AA1|+|BB1|.∵O为AB的中点,∴|AA1|+|BB1|=2|OO1|=4.∴|FA|+|FB|=4,故点F的轨迹是以A,B为焦点的椭圆,其方程为+=1.又F点不能在y轴上,故所求轨迹方程为+=1(x≠0).故选C.3.C 解析:设抛物线C为y2=2px.x=时,|AB|=2p=12,∴p=6.故准线方程为x=-3.∴S△ABP=×12×6=36.4.B 解析:∵直线mx+ny=4与圆x2+y2=4没有交点,∴圆心到直线的距离d=>2,解得m2+n2<4,即点P(m,n)在以原点为圆心,半径为2的圆的内部,而此圆在椭圆+=1的内部,故点P在椭圆内部,经过此点的任意直线与椭圆有两个交点.故选B.5.A 解析:由·=0OA⊥OB,由于双曲线为中心对称图形,因此可考查特殊情况,令点A为直线y=x与双曲线在第一象限的交点,因此点B为直线y=-x与双曲线在第四象限的一个交点,因此直线AB与x轴垂直,点O到直线AB的距离就为点A或点B的横坐标的值.由x=.故选A.6.C 解析:据抛物线定义知,|AB|=x1++x2+=4,∴x1+x2=.故弦AB的中点到x=-的距离为-=+=.二、填空题7.x2+y2+26x+25=0 解析:由题意得a2=16,b2=9,c2=16+9=25.∴F1(-5,0),F2(5,0).设M(x,y),有=,即=.整理即可得解.8. 解析:根据抛物线的性质得1+=5,∴p=8.不妨取M(1,4),则AM的斜率为2,由已知得-×2=-1.故a=.-5-\n9.- 解析:线段FM所在直线方程x+y=1与抛物线交于A(x0,y0),则y0=3-2或y0=3+2(舍去).∴S△OAM=×1×(3-2)=-.三、解答题10.解:(1)由题可知解得a=,c=1,∴b=1.∴椭圆C的方程为+y2=1.(2)设直线l为y=k(x-2),M(x1,y1),N(x2,y2),P(x1,-y1),F(1,0),由得(2k2+1)x2-8k2x+8k2-2=0.所以x1+x2=,x1x2=.而=(x2-1,y2)=(x2-1,kx2-2k),=(x1-1,-y1)=(x1-1,-kx1+2k).∵(x1-1)(kx2-2k)-(x2-1)(-kx1+2k)=k[2x1x2-3(x1+x2)+4]=k=0,∴∥.∴N,F,P三点共线.11.解:(1)由题意得A(a,0),B(0,),故抛物线C1的方程可设为y2=4ax,C2的方程为x2=4y.由所以椭圆C:+=1,抛物线C1:y2=16x,抛物线C2:x2=4y.(2)由(1)知,直线OP的斜率为,所以直线l的斜率为-,设直线l的方程为y=-x+b.由消去y,整理得5x2-8bx+8b2-16=0,因为动直线l与椭圆C交于不同两点,所以Δ=128b2-20(8b2-16)>0,解得-<b<.设M(x1,y1),N(x2,y2),则x1+x2=,x1x2=,y1y2==x1x2-(x1+x2)+b2=.因为=(x1+,y1),=(x2+,y2),所以·=(x1+,y1)·(x2+,y2)=x1x2+(x1+x2)+y1y2+2=.因为-<b<,所以当b=-时,·取得最小值.-5-\n其最小值为×2+×-=-.12.解:(1)∵圆心O到直线l:x+y+8=0的距离为d==4,直线l被圆O截得的弦长2a=2=4,∴a=2.又=,a2-b2=c2,解得b=1,c=.∴椭圆C的方程为+y2=1.(2)∵=+,∴四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等.则四边形OASB为矩形,因此有⊥,设A(x1,y1),B(x2,y2),则x1x2+y1y2=0.直线l的斜率显然存在,设过点(3,0)的直线l方程为y=k(x-3),由得(1+4k2)x2-24k2x+36k2-4=0,由Δ=(-24k2)2-4(1+4k2)(36k2-4)>0,可得-5k2+1>0,即k2<.x1x2+y1y2=x1x2+k2(x1-3)(x2-3)=(1+k2)x1x2-3k2(x1+x2)+9k2=(1+k2)-3k2+9k2,由x1x2+y1y2=0得,k2=,∴k=±,满足Δ>0.故存在这样的直线l,其方程为y=±(x-3).-5-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:46:40 页数:5
价格:¥3 大小:812.00 KB
文章作者:U-336598

推荐特供

MORE