首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
山东省烟台市芝罘区高考数学知识点总结专题8概率新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8概率新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题八之概率【知识概要】一、古典概型●1.随机事件(1)必然事件:在一定条件下必然发生的事件。(2)随机事件:在一定条件下,可能发生也可能不发生事件的事件。(3)不可能事件:在一定条件下不可能发生的事件。●2.频率与概率(1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数,称事件A出现的比例为事件A出现的频率。(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作,称为事件A的概率,简称为A的概率。●3.概率的性质与计算(1)随机事件A的概率为:(2)概率的基本性质:;必然事件的概率为1,不可能事件的概率为0。●4.基本方法:寻找一次试验等可能的结果数的基本方法——枚举法,用枚举法来寻找试验的结果数时注意合理地分类。二、几何概型●1.几何概型的概念:如果每个事件发生的概率只与构成事件区域的长度(面积或体积等)成比例,则这样的概率模型叫几何概型。●2.几何概型计算:在几何概型中,事件A的概率为:●3.基本方法(1)适当地选择角度;(2)将基本事件转化为与之对应的区域;(3)将事件A转化为与之对应的区域;(4)一般如果所设及的问题是一个单变量,可能测度是长度,角度等,如果涉及两个变化量的随机试验,可设这两个变量(如约会问题),利用平面直角坐标系研究组成的点集。三、互斥事件及其概率●1.基本概念(1)互斥事件:不可能同时发生的两个事件叫互斥事件。一般地,如果事件中的任何两个都是互斥事件,那么就说陆\n彼此互斥。(2)对立事件:如果两个互斥事件中必有一个发生,那么这两个事件叫对立事件。●2.有关计算:若事件A与事件B互斥,则;特别地,若事件A与事件B互为对立事件,则;如果事件中的任何两个都是互斥事件,则。四、随机变量1.随机试验的结构应该是不确定的.试验如果满足下述条件:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2.离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若ξ是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ξ取每一个值的概率,则表称为随机变量ξ的概率分布,简称ξ的分布列.……P……有性质①;②.注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取0~5之间的一切数,包括整数、小数、无理数.3.⑴二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:[其中]于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作~B(n·p),其中n,p为参数,并记.⑵二项分布的判断与应用.①二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.陆\n②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4.几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据相互独立事件的概率乘法分式:于是得到随机变量ξ的概率分布列.123…k…Pqqp……我们称ξ服从几何分布,并记,其中5.⑴超几何分布:一批产品共有N件,其中有M(M<N)件次品,今抽取件,则其中的次品数ξ是一离散型随机变量,分布列为.〔分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定<时,则k的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由a件次品、b件正品组成,今抽取n件(1≤n≤a+b),则次品数ξ的分布列为.⑶超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,等可能:含个结果,故,即~.[我们先为k个次品选定位置,共种选法;然后每个次品位置有a种选法,每个正品位置有b种选法]可以证明:当产品总数很大而抽取个数不多时,,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样.五、数学期望与方差.1.期望的含义:一般地,若离散型随机变量ξ的概率分布为……P……则称为ξ陆\n的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平.2.⑴随机变量的数学期望:①当时,,即常数的数学期望就是这个常数本身.②当时,,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当时,,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.ξ01Pqp⑵单点分布:其分布列为:.⑶两点分布:,其分布列为:(p+q=1)⑷二项分布:其分布列为~.(P为发生的概率)⑸几何分布:其分布列为~.(P为发生的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为时,则称为ξ的方差.显然,故为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.越小,稳定性越高,波动越小.4.方差的性质.⑴随机变量的方差.(a、b均为常数)ξ01Pqp⑵单点分布:其分布列为⑶两点分布:其分布列为:(p+q=1)⑷二项分布:⑸几何分布:5.期望与方差的关系.⑴如果和都存在,则⑵设ξ和是互相独立的两个随机变量,则陆\n⑶期望与方差的转化:⑷(因为为一常数).六、正态分布.1.密度曲线与密度函数:对于连续型随机变量ξ,位于x轴上方,ξ落在任一区间内的概率等于它与x轴.直线与直线所围成的曲边梯形的面积(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数叫做ξ的密度函数,由于“”是必然事件,故密度曲线与x轴所夹部分面积等于1.2.⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:.(为常数,且),称ξ服从参数为的正态分布,用~表示.的表达式可简记为,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若~,则ξ的期望与方差分别为:.⑶正态曲线的性质.①曲线在x轴上方,与x轴不相交.②曲线关于直线对称.③当时曲线处于最高点,当x向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当<时,曲线上升;当>时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x轴为渐近线,向x轴无限的靠近.⑤当一定时,曲线的形状由确定,越大,曲线越“矮胖”.表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中.3.⑴标准正态分布:如果随机变量ξ的概率函数为,则称ξ服从标准正态分布.即~有,求出,而P(a<≤b)的计算则是.注意:当标准正态分布的的X取0时,有当的X取大于0的数时,有陆\n.比如则必然小于0,如图.⑵正态分布与标准正态分布间的关系:若~则ξ的分布函数通常用表示,且有.4.⑴“3”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布.②确定一次试验中的取值是否落入范围.③做出判断:如果,接受统计假设.如果,由于这是小概率事件,就拒绝统计假设.⑵“3”原则的应用:若随机变量ξ服从正态分布则ξ落在内的概率为99.7%亦即落在之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).陆
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
山东省烟台市芝罘区高考数学知识点总结专题9导数及其应用新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8统计新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8算法初步新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8复数新人教A版
山东省烟台市芝罘区高考数学知识点总结专题6立体几何新人教A版
山东省烟台市芝罘区高考数学知识点总结专题5不等式新人教A版
山东省烟台市芝罘区高考数学知识点总结专题4数列新人教A版
山东省烟台市芝罘区高考数学知识点总结专题3平面向量新人教A版
山东省烟台市芝罘区高考数学知识点总结专题1函数新人教A版
山东省烟台市芝罘区高考数学知识点总结专题10模块选讲之推理与证明新人教A版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 23:35:04
页数:6
价格:¥3
大小:178.44 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划