首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
山东省烟台市芝罘区高考数学知识点总结专题8统计新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8统计新人教A版
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题八之统计【知识概要】一、抽样方法●1.简单随机抽样——设一个总体的总数为N,若通过逐个抽取的方法从总体中抽取一个样本,且每次抽取时,各个个体被抽到的概率相等,这样的抽样方法叫简单随机抽样。特点:不放回抽样;逐个抽取;被抽取的样本的总数是有限的。主要方法:抽签法;随机数表法。●2.系统抽样——将总体平均分成几个部分,然后按照预先定出的规则,从每个部分中抽取一个个体,得到所需的样本,这样的抽样方法叫简单系统抽样。特点:等概率抽样;等距离(或按预先定出的规则)抽样;不放回抽样。系统抽样的步骤:①采用随机的方式将总体中的个体编号;②将整个的编号按一定的间隔(设为k),当(N为总体中的个体数,n为样本容量)是整数时,当不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数能被n整除,这时,并将剩下的总体重新编号;③在第一段中用简单随机抽样确定起始的个体标号l;④将编号为的个体抽出。●3.分层抽样——当总体由差异明显的几个部分组成时,将总体中的个体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这样的抽样方法叫分层抽样。特点:每层抽取的样本数=;等概率抽样;不放回抽样。分层抽样的步骤:①将总体按一定标准分层;②计算各层的个数与总体的个数的比;③按各层个数占总体的个数的比确定各层应抽取的样本容量;④在每一层进行抽样(可用简单随机抽样或系统抽样)。二、总体分布的估计和总体特征数的估计●1.频率分布表的有关概念(1)频数:在一组数据中,某范围内的数据出现的次数;(2)频率:频数除以数据的总个数;(3)全距:数据中最大与最小值的差;(4)组距=;(5)分组要求:通常对组内数值所在区间取左开右闭区间,最后一组取闭区间,并且使分点比数据多一位小数。●2.频率分布直方图壹拾\n具体做法如下:(1)求极差(即一组数据中最大值与最小值的差);(2)决定组距与组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图:①横轴表示样本数据,纵轴表示频率与组距的比值;②以每个组距为底,以各频率除以组距的商为高,分别画成矩形;③图中每个矩形的面积等于相应组的频率,即:;④各组频率的和等于1,即各小矩形的面积的和等于1。●3.频率分布折线图:将频率分布直方图中,取各相邻矩形的上底边中点顺次连接,再将矩形的边去掉,就得到频率分布折线图。●4.密度曲线:当样本容量取得足够大,分组的组距取得足够小,则这条折线就越接近于一条光滑的曲线,这条光滑的曲线称为总体密度曲线。●5.中位数:将数据按从小到大或从大到小排列,处在中间位置上的一个数据(或中间两位数据的平均数)叫做这组数据的中位数。●6.众数:在一组数据中出现次数最多的数叫做这组数据的众数;众数不一定是唯一的。●7.平均数计算的方法:(1)简单平均数;(2)离散型平均数计算:所发生的频率分别为,则平均数为;(3)区间型平均数计算:所发生的频率分别为,则平均数为●8.方差:●9.标准差:三、统计案例背景独立性检验线性回归分析抽取样本抽取样本提出统计假设提出统计假设运用χ2检验运用r检验作出统计推断壹拾\n●1.回归分析回归分析:对于两个变量,当自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫相关关系或回归关系。对具有相关关系的两个变量进行统计分析的方法叫回归分析。线性回归方程:设与是具有相关关系的两个变量,且相应于个观测值的个点大致分布在某一条直线的附近,就可以认为对的回归函数的类型为直线型:,我们称这个方程为对的线性回归方程。(1)设两个具有线性相关的一组数据为:则线性回归方程为:其中,分别为,的算术平均数。(2)特点:线性回归方程过点;●2.相关系数对于变量y与x的一组观测值,把叫做变量y与x之间的样本相关系数,简称相关系数,用它衡量两个变量之间的线性相关程度。相关系数的性质:≤1,且越接近1,相关程度越大;越接近0,相关程度越小。●3独立性检验独立性检验是对两种分类变量之间是否有关系进行检验。①独立性检验的必要性:2×2列联表中的数据是样本数据,它只是总体的代表,具有随机性,故需要用列联表检验的方法确认所得结论在多大程度上适用于总体。②独立性检验的原理(与反证法类似):反证法假设检验要证明结论A备择假设H在A不成立的前提下进行推理在H不成立的条件下,即H成立的条件下进行推理推出矛盾,意味着结论A成立推出有利于H成立的小概率事件(概率不超过的事件)发生,意味着H成立的可能性(可能性为(1-))很大壹拾\n没有找到矛盾,不能对A下任何结论,即反证法不成功推出有利于H成立的小概率事件不发生,接受原假设③独立性检验的步骤第一步:提出假设检验问题;第二步:选择检验的指标(卡方检验);(它越小,原假设“H:成立的可能性越大”;它越大,备择假设“H:成立的可能性越大”。第三步:查表得出结论。P()0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.83如:当时,有95%的把握说两事件有关;时,有99%的把握说两事件有关;如果,没有充分的证据显示两事件有关。四、计数原理与二项式定理●1.两个原理.1.乘法原理、加法原理.2.可以有重复元素的排列.从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m个不同元素中,每次取出n个元素可重复排列数m·m·…m=mn..例如:n件物品放入m个抽屉中,不限放法,共有多少种不同放法?(解:种)●2.排列.1.⑴对排列定义的理解.定义:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑶排列数.从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列.从n个不同元素中取出m个元素的一个排列数,用符号表示.⑷排列数公式:注意:规定0!=1规定2.含有可重元素的排列问题.壹拾\n对含有相同元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n=n1+n2+……nk,则S的排列个数等于.例如:已知数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.●3.组合.1.⑴组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.⑵组合数公式:⑶两个公式:①②①从n个不同元素中取出m个元素后就剩下n-m个元素,因此从n个不同元素中取出n-m个元素的方法是一一对应的,因此是一样多的就是说从n个不同元素中取出n-m个元素的唯一的一个组合.。(或者从n+1个编号不同的小球中,n个白球一个红球,任取m个不同小球其不同选法,分二类,一类是含红球选法有一类是不含红球的选法有)②根据组合定义与加法原理得;在确定n+1个不同元素中取m个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C,如果不取这一元素,则需从剩余n个元素中取出m个元素,所以共有C种,依分类原理有.⑷排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式②常用的证明组合等式方法例.i.裂项求和法.如:(利用)ii.导数法.iii.数学归纳法.iv.倒序求和法.v.递推法(即用递推)如:.vi.构造二项式.如:壹拾\n证明:这里构造二项式其中的系数,左边为,而右边●4.排列、组合综合.1.I.排列、组合问题几大解题方法及题型:①直接法.②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n个不同元素排成一列,要求其中某个元素必相邻的排列有个.其中是一个“整体排列”,而则是“局部排列”.又例如①有n个不同座位,A、B两个不能相邻,则有排列法种数为.②有n件不同商品,若其中A、B排在一起有.③有n件不同商品,若其中有二件要排在一起有.注:①③区别在于①是确定的座位,有种;而③的商品地位相同,是从n件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n个元素全排列,其中m个元素互不相邻,不同的排法种数为多少?(插空法),当n–m+1≥m,即m≤时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m个元素次序一定,共有种排列方法.例如:n个元素全排列,其中m个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n=n!/m!;解法二:(比例分配法).壹拾\n⑦平均法:若把kn个不同元素平均分成k组,每组n个,共有.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有(平均分组就用不着管组与组之间的顺序问题了)又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少?()注意:分组与插空综合.例如:n个元素全排列,其中某m个元素互不相邻且顺序不变,共有多少种排法?有,当n–m+1≥m,即m≤时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为显然,故()是方程的一组解.反之,方程的任何一组解,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应.即方程的解的组数等于插隔板的方法数.注意:若为非负数解的x个数,即用中等于,有,进而转化为求a的正整数解的个数为.⑨定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有.例如:从n个不同元素中,每次取出m个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:;不在某一位置上:或(一类是不取出特殊元素a,有,一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的)⑩指定元素排列组合问题.i.从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内。先C后A策略,排列;组合.ii.从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内。先C后A策略,排列;组合.壹拾\niii从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素。先C后A策略,排列;组合.II.排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略(处理排列组合综合性问题一般是先选元素,后排列);④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2.组合问题中分组问题和分配问题.①均匀不编号分组:将n个不同元素分成不编号的m组,假定其中r组元素个数相等,不管是否分尽,其分法种数为(其中A为非均匀不编号分组中分法数).如果再有K组均匀分组应再除以.例:10人分成三组,各组元素个数为2、4、4,其分法种数为.若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为②非均匀编号分组:n个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:种.若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有种③均匀编号分组:n个不同元素分成m组,其中r组元素个数相同且考虑各组间的顺序,其分法种数为.例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为④非均匀不编号分组:将n个不同元素分成不编号的m组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为…例:10人分成三组,每组人数分别为2、3、5,其分法种数为若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为.●5.二项式定理.1.⑴二项式定理:.展开式具有以下特点:壹拾\n①项数:共有项;②系数:依次为组合数③每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.⑵二项展开式的通项.展开式中的第项为:.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I.当n是偶数时,中间项是第项,它的二项式系数最大;II.当n是奇数时,中间项为两项,即第项和第项,它们的二项式系数最大.③系数和:附:一般来说为常数)在求系数最大的项或最小的项时均可直接根据性质二求解.当时,一般采用解不等式组的系数或系数的绝对值)的办法来求解.⑷如何来求展开式中含的系数呢?其中且把视为二项式,先找出含有的项,另一方面在中含有的项为,故在中含的项为.其系数为.2.近似计算的处理方法.当a的绝对值与1相比很小且n不大时,常用近似公式,因为这时展开式的后面部分很小,可以忽略不计。类似地,有但使用这两个公式时应注意a的条件,以及对计算精确度的要求.壹拾\n壹拾
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
山东省烟台市芝罘区高考数学知识点总结专题9导数及其应用新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8算法初步新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8概率新人教A版
山东省烟台市芝罘区高考数学知识点总结专题8复数新人教A版
山东省烟台市芝罘区高考数学知识点总结专题6立体几何新人教A版
山东省烟台市芝罘区高考数学知识点总结专题5不等式新人教A版
山东省烟台市芝罘区高考数学知识点总结专题4数列新人教A版
山东省烟台市芝罘区高考数学知识点总结专题3平面向量新人教A版
山东省烟台市芝罘区高考数学知识点总结专题1函数新人教A版
山东省烟台市芝罘区高考数学知识点总结专题10模块选讲之推理与证明新人教A版
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 23:35:04
页数:10
价格:¥3
大小:224.37 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划