首页

浙江专用2022高考数学二轮复习专题4.3立体几何中的向量方法精练理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

剩余11页未读,查看更多内容需下载

第3讲 立体几何中的向量方法(建议用时:60分钟)一、选择题1.已知平面ABC,点M是空间任意一点,点M满足条件=++,则直线AM(  ).A.与平面ABC平行B.是平面ABC的斜线C.是平面ABC的垂线D.在平面ABC内解析 由已知得M,A,B,C四点共面,所以AM在平面ABC内,选D.答案 D2.如图,正方体ABCD-A1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1M=AN=,则MN与平面BB1C1C的位置关系是(  ).A.相交B.平行C.垂直D.不能确定解析 =++=++=(+)++(+)=++,又是平面BB1C1C的一个法向量,且·=++·=0,∴⊥,又MN⊄面BB1C1C,∴MN∥平面BB1C1C.答案 B13\n3.如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是(  ).A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角解析 选项A正确,因为SD垂直于底面ABCD,而AC⊂平面ABCD,所以AC⊥SD;再由四边形ABCD为正方形,所以AC⊥BD;而BD与SD相交,所以,AC⊥平面SBD,AC⊥SB.选项B正确,因为AB∥CD,而CD⊂平面SCD,AB⊄平面SCD,所以AB∥平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是∠ASO,SC与平面SBD所成的角就是∠CSO,易知这两个角相等.选项D错误,AB与SC所成的角等于∠SCD,而DC与SA所成的角是∠SAB,这两个角不相等.答案 D4.已知正三棱柱ABC-A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于(  ).A.B.C.D.解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O(0,0,0),B(,0,0),A(0,-1,0),B1(,0,2),则=(,1,2),则=(-,0,0)为侧面ACC1A1的法向量,由sinθ==.13\n答案 A5.(2022·新课标全国Ⅱ卷)直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为(  ).A.B.C.D.解析 法一 由于∠BCA=90°,三棱柱为直三棱柱,且BC=CA=CC1,可将三棱柱补成正方体.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),∴=(1,1,2)-(2,2,0)=(-1,-1,2),=(0,1,2).∴cos〈,〉====.法二 如图(2),取BC的中点D,连接MN,ND,AD,由于MN綉B1C1綉BD,因此有ND綉BM,则ND与NA所成角即为异面直线BM与AN所成角.设BC=2,则BM=ND=,AN=,AD=,因此cos∠AND==.答案 C13\n6.如图,点P是单位正方体ABCD-A1B1C1D1中异于A的一个顶点,则·的值为(  ).A.0B.1C.0或1D.任意实数解析 可为下列7个向量:,,,,,,.其中一个与重合,·=||2=1;,,与垂直,这时·=0;,与的夹角为45°,这时·=×1×cos=1,最后·=×1×cos∠BAC1=×=1,故选C.答案 C7.(2022·浙江卷)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A′CD,所成二面角A′-CD-B的平面角为α,则(  ).A.∠A′DB≤α   B.∠A′DB≥αC.∠A′CB≤α   D.∠A′CB≥α解析 极限思想:若α=π,则∠A′CB<π,排除D;若α=0,如图,则∠A′DB,∠13\nA′CB都可以大于0,排除A,C.故选B.答案 B二、填空题8.在一直角坐标系中,已知A(-1,6),B(3,-8),现沿x轴将坐标平面折成60°的二面角,则折叠后A,B两点间的距离为________.解析 如图为折叠后的图形,其中作AC⊥l于点C,BD⊥l于点D,则AC=6,BD=8,CD=4,两异面直线AC,BD所成的角为60°,故由=++,得||2=|++|2=68,∴||=2.答案 29.已知ABCD-A1B1C1D1为正方体,①(++)2=32;②·(-)=0;③向量与向量的夹角是60°;④正方体ABCD-A1B1C1D1的体积为|··|.其中正确命题的序号是________.解析 设正方体的棱长为1,①中(++)2=2=3()2=3,故①正确;②中-=,由于AB1⊥A1C,故②正确;③中A1B与AD1两异面直线所成的角为60°,但与的夹角为120°,故③不正确;④中|··|=0.故④也不正确.答案 ①②13\n10.已知正四棱锥P-ABCD的侧棱与底面所成角为60°,M为PA中点,连接DM,则DM与平面PAC所成角的大小是________.解析 设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n=(1,0,0),D,A0,-a,0,P,M,=,所以cos〈,n〉==,所以DM与平面PAC所成角为45°.答案 45°11.(2022·孝感模拟)如图,在正方体ABCD-A1B1C1D1中,点P在直线BC1上运动时,有下列三个命题:①三棱锥A-D1PC的体积不变;②直线AP与平面ACD1所成角的大小不变;③二面角P-AD1-C的大小不变.其中真命题的序号是________.13\n解析 ①中,∵BC1∥平面AD1C,∴BC1上任意一点到平面AD1C的距离相等,所以体积不变,正确;②中,P在直线BC1上运动时,直线AB与平面ACD1所成角和直线AC1与平面ACD1所成角不相等,所以不正确;③中,P在直线BC1上运动时,点P在平面AD1C1B中,即二面角P-AD1-C的大小不受影响,所以正确.答案 ①③12.(2022·四川卷)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,动点M在线段PQ上,E、F分别为AB、BC的中点.设异面直线EM与AF所成的角为θ,则cosθ的最大值为________.解析 建立空间直角坐标系如图所示,设AB=1,则=,E,设M(0,y,1)(0≤y≤1),则=,∴cosθ==-.设异面直线所成的角为α,13\n则cosα=|cosθ|==·,令t=1-y,则y=1-t,∵0≤y≤1,∴0≤t≤1,那么cosα=|cosθ|=·==,令x=,∵0≤t≤1,∴x≥1,那么cosα=,又∵z=9x2-8x+4在[1,+∞)上单增,∴x=1,zmin=5,此时cosα的最大值=·=·=.答案 三、解答题13.(2022·北京卷)如图,在四棱锥A-EFCB中,△AEF为等边三角形,平面AEF⊥平面EFCB,EF∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O为EF的中点.(1)求证:AO⊥BE;(2)求二面角F-AE-B的余弦值;(3)若BE⊥平面AOC,求a的值.(1)证明 因为△AEF是等边三角形,O为EF的中点,所以AO⊥EF.13\n又因为平面AEF⊥平面EFCB.AO⊂平面AEF,所以AO⊥平面EFCB.所以AO⊥BE.(2)解 取BC中点G,连接OG.由题设知EFCB是等腰梯形,所以OG⊥EF.由(1)知AO⊥平面EFCB.又OG⊂平面EFCB,所以OA⊥OG.如图建立空间直角坐标系O-xyz,则E(a,0,0),A(0,0,a),B(2,(2-a),0),=(-a,0,a),=(a-2,(a-2),0).设平面AEB的法向量为n=(x,y,z),则即令z=1,则x=,y=-1,于是n=(,-1,1).平面AEF的法向量为p=(0,1,0).所以cos〈n,p〉==-.由题知二面角F-AE-B为钝角,所以它的余弦值为-.(3)解 因为BE⊥平面AOC,所以BE⊥OC,即·=0,因为=(a-2,(a-2),0),=(-2,(2-a),0),所以·=-2(a-2)-3(a-2)2.由·=0及0<a<2,13\n解得a=.14.(2022·江苏卷)如图,在四棱锥P-ABCD中,已知PA⊥平面ABCD,且四边形ABCD为直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.(1)求平面PAB与平面PCD所成二面角的余弦值;(2)点Q是线段BP上的动点,当直线CQ与DP所成的角最小时,求线段BQ的长.解 以{,,}为正交基底建立如图所示的空间直角坐标系A-xyz,则各点的坐标为B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,2).(1)因为AD⊥平面PAB,所以是平面PAB的一个法向量,=(0,2,0).因为=(1,1,-2),=(0,2,-2).设平面PCD的法向量为m=(x,y,z),则m·=0,m·=0,即令y=1,解得z=1,x=1.所以m=(1,1,1)是平面PCD的一个法向量.13\n从而cos〈,m〉==,所以平面PAB与平面PCD所成二面角的余弦值为.(2)因为=(-1,0,2),设=λ=(-λ,0,2λ)(0≤λ≤1),又=(0,-1,0),则=+=(-λ,-1,2λ),又=(0,-2,2),从而cos〈,〉==.设1+2λ=t,t∈[1,3],则cos2〈,〉==≤.当且仅当t=,即λ=时,|cos〈,〉|的最大值为.因为y=cosx在上是减函数,此时直线CQ与DP所成角取得最小值.又因为BP==,所以BQ=BP=.15.(2022·陕西卷)如图1,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.13\n(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.图1(1)证明 在图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,且A1O∩OC=O,从而BE⊥平面A1OC,又在直角梯形ABCD中,AD∥BC,BC=AD,E为AD中点,所以BC綉ED,所以四边形BCDE为平行四边形,故有CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=,   图2如图,以O为原点,建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,13\nA1,C,得=,=,==(-,0,0),设平面A1BC的法向量n1=(x1,y1,z1),平面A1CD的法向量n2=(x2,y2,z2),平面A1BC与平面A1CD夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cosθ=|cosn1,n2|==,即平面A1BC与平面A1CD夹角的余弦值为.13

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:15:10 页数:13
价格:¥3 大小:305.66 KB
文章作者:U-336598

推荐特供

MORE