首页

浙江专用2022高考数学二轮复习专题5.2椭圆双曲线抛物线的基本问题精练理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

第2讲 椭圆、双曲线、抛物线的基本问题(建议用时:70分钟)一、选择题1.抛物线y2=4x的焦点到双曲线x2-=1的渐近线的距离是(  ).A.B.C.1D.解析 抛物线y2=4x的焦点F(1,0),双曲线x2-=1的渐近线是y=±x,即x±y=0,故所求距离为=.选B.答案 B2.(2022·新课标全国Ⅰ卷)已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A,B两点.若AB的中点坐标为(1,-1),则E的方程为(  ).A.+=1B.+=1C.+=1D.+=1解析 直线AB的斜率k==,设A(x1,y1),B(x2,y2),所以①-②得=-·.又x1+x2=2,y1+y2=-2,所以k=-×,所以=,③又a2-b2=c2=9,④由③④得a2=18,b2=9.故椭圆E的方程为+=1.答案 D8\n3.(2022·天津卷)已知双曲线-=1(a>0,b>0)的一条渐近线过点(2,),且双曲线的一个焦点在抛物线y2=4x的准线上,则双曲线的方程为(  ).A.-=1B.-=1C.-=1D.-=1解析 双曲线-=1的渐近线方程为y=±x,又渐近线过点(2,),所以=,即2b=a,①抛物线y2=4x的准线方程为x=-,由已知,得=,即a2+b2=7.②,联立①②解得a2=4,b2=3,所求双曲线的方程为-=1,选D.答案 D4.已知双曲线C与椭圆+=1有共同的焦点F1,F2,且离心率互为倒数.若双曲线右支上一点P到右焦点F2的距离为4,则PF2的中点M到坐标原点O的距离等于(  ).A.3B.4C.2D.1解析 由椭圆的标准方程,可得椭圆的半焦距c==2,故椭圆的离心率e1==,则双曲线的离心率e2==2.因为椭圆和双曲线有共同的焦点,所以双曲线的半焦距也为c=2.设双曲线C的方程为-=1(a>0,b>0),则有a===1,b===,所以双曲线的标准方程为x2-=1.因为点P在双曲线的右支上,则由双曲线的定义,可得|PF1|-|PF2|=2a=2,又|PF2|=4,所以|PF1|=6.因为坐标原点O为F1F2的中点,M为PF2的中点.所以|MO|=|PF1|=3.答案 A5.(2022·绍兴一模)已知抛物线y2=4px(p>0)与双曲线-=1(a>0,b>0)有相同的焦点F,点A是两曲线的交点,且AF⊥x轴,则双曲线的离心率为8\n(  ).A.B.+1C.+1D.解析 依题意,得F(p,0),因为AF⊥x轴,设A(p,y),y>0,y2=4p2,所以y=2p.所以A(p,2p).又点A在双曲线上,所以-=1.又因为c=p,所以-=1,化简,得c4-6a2c2+a4=0,即4-62+1=0.所以e2=3+2,∴e=+1.答案 B6.(2022·重庆卷)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P,使得|PF1|+|PF2|=3b,|PF1|·|PF2|=ab,则该双曲线的离心率为(  ).A.B.C.D.3解析 不妨设P为双曲线右支上一点,|PF1|=r1,|PF2|=r2,根据双曲线的定义,得r1-r2=2a,又r1+r2=3b,故r1=,r2=.又r1·r2=ab,所以·=ab,解得=(负值舍去),故e=====,故选B.答案 B7.(2022·浙江卷)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  ).8\nA.   B.C.   D.解析 由图象知==,由抛物线的性质知|BF|=xB+1,|AF|=xA+1,∴xB=|BF|-1,xA=|AF|-1,∴=.故选A.答案 A二、填空题8.(2022·陕西卷)若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=________.解析 由于双曲线x2-y2=1的焦点为(±,0),故应有=,p=2.答案 29.(2022·北京卷)已知双曲线-y2=1(a>0)的一条渐近线为x+y=0,则a=________.解析 双曲线渐近线方程为y=±x,∴=,又b=1,∴a=.答案 10.(2022·湖南卷)设F是双曲线C:-=1的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为________.解析 不妨设F(c,0),则由条件知P(-c,±2b),代入-=1得=5,∴e=.答案 11.椭圆T:+=1(a>b>0)的左、右焦点分别为F1,F2,焦距为2c.若直线y=(x+c)与椭圆T的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于________.解析 直线y=(x+c)过点F1,且倾斜角为60°,所以∠MF1F2=60°,从而∠MF2F1=30°,所以MF1⊥MF2,在Rt△MF1F2中,|MF1|=c,|MF2|=c,所以该椭圆的离心率e===-1.8\n答案 -112.(2022·浙江卷)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.解析 设直线l的方程为y=k(x+1),A(x1,y1),B(x2,y2),Q(x0,y0).由得:k2x2+(2k2-4)x+k2=0,则x1+x2=,y1+y2=k(x1+x2+2)=,故x0=,y0=.由=2,得2+2=4.所以k=±1.答案 ±1三、解答题13.(2022·重庆卷)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P、Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解 (1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|===2,即c=,即c=,从而b==1.故所求椭圆的标准方程为+y2=1.8\n(2)法一 如图,设点P(x0,y0)在椭圆上,且PF1⊥PF2,则+=1,x+y=c2,求得x0=±,y0=±.由|PF1|=|PQ|>|PF2|得x0>0,从而|PF1|2=2+.=2(a2-b2)+2a=(a+)2.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a,从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PF2,|PF1|=|PQ|,知|QF1|=|PF1|,因此,(2+)|PF1|=4a,即(2+)(a+)=4a,于是(2+)(1+)=4,解得e==-.法二 如图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=|PF1|,因此,4a-2|PF1|=|PF1|,得|PF1|=2(2-)a,从而|PF2|=2a-|PF1|=2a-2(2-)a=2(-1)a.由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=====-.14.在平面直角坐标系xOy中,已知椭圆C1:+=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.(1)求椭圆C1的方程;8\n(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.解 (1)因为椭圆C1的左焦点为F1(-1,0),所以c=1.将点P(0,1)代入椭圆方程+=1,得=1,即b=1.所以a2=b2+c2=2.所以椭圆C1的方程为+y2=1.(2)由题意可知,直线l的斜率显然存在且不等于0,设直线l的方程为y=kx+m,由消去y并整理得(1+2k2)x2+4kmx+2m2-2=0.因为直线l与椭圆C1相切,所以Δ1=16k2m2-4(1+2k2)(2m2-2)=0.整理,得2k2-m2+1=0,①由消y,得k2x2+(2km-4)x+m2=0.∵直线l与抛物线C2相切,∴Δ2=(2km-4)2-4k2m2=0,整理,得km=1,②联立①、②,得或∴l的方程为y=x+或y=-x-.15.(2022·江苏卷)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,8\nC,若PC=2AB,求直线AB的方程.解 (1)由题意,得=且c+=3,解得a=,c=1,则b=1,所以椭圆的标准方程为+y2=1.(2)当AB⊥x轴时,AB=,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=,C的坐标为,且AB===.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k≠0,故直线PC的方程为y+=-,则P点的坐标为,从而PC=.因为PC=2AB,所以=,解得k=±1.此时直线AB的方程为y=x-1或y=-x+1.8

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 23:15:09 页数:8
价格:¥3 大小:93.00 KB
文章作者:U-336598

推荐特供

MORE