首页

高考数学例解导数的概念doc高中数学

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

导数定义的利用例假设,那么等于()A.B.C.D.以上都不是分析:此题考察的是对导数定义的理解,根据导数定义直接求解即可解:由于,应选A求曲线方程的斜率和方程例已知曲线上一点,用斜率定义求:(1)点A的切线的斜率(2)点A处的切线方程分析:求曲线在A处的斜率,即求解:(1)(2)切线方程为即说明:上述求导方法也是用定义求运动物体在时刻处的瞬时速度的步骤.5/5\n判断分段函数的在段点处的导数例已知函数,判断在处是否可导?分析:对分段函数在“分界点”处的导数问题,要根据定义来判断是否可导.解:∴在处不可导.说明:函数在某一点的导数,是指一个极限值,即,当;包括;,判定分段函数在“分界处”的导数是否存在时,要验证其左、右极限是否存在且相等,如果存在且相等,才能判定这点存在导数,否那么不存在导数.利用导数定义的求解例设函数在点处可导,试求以下各极限的值.1.;2.3.假设,那么等于()A.-1B.-2C.-1D.5/5\n分析:在导数的定义中,增量的形式是多种多样的,但不管选择哪种形式,也必须选择相对应的形式.利用函数在点处可导的条件,可以将已给定的极限式班等变形转化为导数定义的构造形式.解:1.原式=2.原式=3.(含),∴应选A.说明:概念是分析解决问题的重要依据,只有熟练掌握概念的本质属性,把握其内涵与外延,才能灵活地应用概念进展解题,不能准确分析和把握给定的极限式与导数的关系,盲目套用导数的定义是使思维受阻的主要原因.解决这类问题的关键就是等价变形,使问题转化.利用定义求导数例1.求函数在处的导数;2.求函数(a、b为常数)的导数.分析:根据导数的概念求函数的导数是求导数的根本方法,确定函数在处的导数有两种方法,应用导数定义法和导函数的函数值法.5/5\n解:1.解法一(导数定义法):,解法二(导函数的函数值法):,∴2.说明:求导其本质是求极限,在求极限的过程中,力求使所求极限的构造形式转化为已知极限的形式,即导数的定义,这是能够顺利求导的关键,因此必须深刻理解导数的概念.证明函数的在一点处连续例证明:假设函数在点处可导,那么函数在点处连续.分析:从已知和要证明的问题中去寻求转化的方法和策略,要证明在点处连续,必须证明.由于函数在点5/5\n处可导,因此,根据函数在点处可导的定义,逐步实现两个转化,一个是趋向的转化,另一个是形式(变为导数定义形式)的转化.解:证法一:设,那么当时,,∴函数在点处连续.证法二:∵函数在点处可导,∴在点处有∴∴函数在点处连续.说明:对于同一个问题,可以从不同角度去表述,关键是要透过现象看清问题的本质,正确运用转化思想来解决问题.函数在点处连续,有极限以及导数存在这三者之间的关系是:导数存在连续有极限.反之那么不一定成立.证题过程中不能合理实现转化,而直接理解为是使论证推理出现失误的障碍.5/5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:52:55 页数:5
价格:¥3 大小:103.91 KB
文章作者:U-336598

推荐特供

MORE