首页

高考数学例解符合函数的导数doc高中数学

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

求分段函数的导数例求函数的导数分析:当时因为存在,所以应当用导数定义求,当时,的关系式是初等函数,可以按各种求导法同求它的导数.解:当时,当时,说明:如果一个函数在点连续,那么有,但如果我们不能断定的导数是否在点连续,不能认为.指出函数的复合关系例指出以下函数的复合关系.1.;2.;3.;4.。分析:由复合函数的定义可知,中间变量的选择应是根本函数的构造,解决这类问题的关键是正确分析函数的复合层次,一般是从最外层开场,由外及里,一层一层地分析,把复合函数分解成假设干个常见的根本函数,逐步确定复合过程.解:函数的复合关系分别是1.;5/5\n2.;3.;4.说明:分不清复合函数的复合关系,无视最外层和中间变量都是根本函数的构造形式,而最内层可以是关于自变量x的根本函数,也可以是关于自变量的根本函数经过有限次的四那么运算而得到的函数,导致陷入解题误区,达不到预期的效果.求函数的导数例求以下函数的导数.1.;2.;3.;4.。分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些根本函数经过怎样的顺序复合而成的,分清其间的复合关系.要善于把一局部量、式子暂时当作一个整体,这个暂时的整体,就是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中特别要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数.解:1.解法一:设,那么解法二:5/5\n2.解法一:设,那么解法二:3.解法一:设,那么解法二:4.解法一:设,那么5/5\n解法二:说明:对于复合函数的求导,要注意分析问题的具体特征,灵活恰当地选择中间变量,不可机械照搬某种固定的模式,否那么会使确定的复合关系不准确,不能有效地进展求导运算.学生易犯错误是混淆变量或忘记中间变量对自变量求导.求复合函数的导数例求以下函数的导数(其中是可导函数)1.;2.分析:对于抽象函数的求导,一方面要从其形式上把握其构造特征,另一方面要充分运用复合关系的求导法那么。先设出中间变量,再根据复合函数的导数运算法那么进展求导运算。一般地,假设中间变量以直接可对所设变量求导,不需要再次假设,如果所设中间变量可直接求导,就不必再选中间变量。解:1.解法一:设,那么解法二:5/5\n2.解法一:设,那么解法二:说明:理解概念应准确全面,对抽象函数的概念认识缺乏,显示了一种思维上的惰性,导致判断复合关系不准确,没有起到假设中间变量的作用。其次应重视与的区别,前者是对中间变量的求导,后者表示对自变量x的求导.5/5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:52:53 页数:5
价格:¥3 大小:74.55 KB
文章作者:U-336598

推荐特供

MORE