首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
高考数学玩转压轴题专题1.8极值点偏移第六招__极值点偏移终极套路
高考数学玩转压轴题专题1.8极值点偏移第六招__极值点偏移终极套路
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题1.8极值点偏移第六招--极值点偏移终极套路值点偏移问题在高考中很常见,此类问题以导数为背景考察学生运用函数与方程、数形结合、转换的思想解决函数问题的能力,层次性强,能力要求较高.下面给出引例,通过探究,归纳总结出解决此类问题的一般性方法.★已知,.若有两个极值点,,且,求证:(为自然对数的底数).解法一:齐次构造通解偏移套路于是.又,设,则.因此,,.要证,即证:,.即:当时,有.设函数,,则,所以,为上的增函数.注意到,,因此,.18\n于是,当时,有.所以,有成立,.解法二变换函数能妙解证法2:欲证,需证.若有两个极值点,,即函数有两个零点.又,所以,,是方程的两个不同实根.显然,否则,函数为单调函数,不符合题意.由,解法三构造函数现实力证法3:由,是方程的两个不同实根得,令,,由于,因此,在,.设,需证明,只需证明,只需证明,即,即.即,,故在18\n,故,即.令,则,因为,,在,所以,即.解法四巧引变量(一)证法4:设,,则由得,设,则,.欲证,解法五巧引变量(二)证法5:设,,则由得,设,则,.欲证,需证,即只需证明,即,设,,故在,因此,命题得证.18\n★已知函数,若方程有两个不相等的实数根,求证:.欲证:,结合的单调性,即证:等价于证明:令,构造函数,求导由单调性易得原不等式成立,略.法二:接后续解:由得:18\n构造函数,求导由单调性易得在恒成立,又因为,故成立.法三:接④后续解:视为主元,设则在上单调递增,故,再结合,故成立.法四:构造函数,18\n则,从而在上单调递增,故,即对恒成立,从而,则,由,且在单调递增,故,即,从而成立.招式演练:★已知函数有两个不同的零点.求的最值;证明:.【答案】(1),无最小值(2)见解析18\n【方法点睛】本题主要考查利用导数研究函数的单调性及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步构造函数利用导数证明.★已知函数,为自然对数的底数.(1)讨论的单调性;(2)若函数的图象与直线交于两点,线段中点的横坐标为,证明:(为函数的导函数)18\n【答案】(1)见解析(2)见解析(2)∵,∴,当时,在上单调递增,与直线不可能有两个交点,故.令,则;令,则,故在上单调递增,在上单调递减.不妨设,且,要证,需证,即证,又,所以只需证,即证:当时,18\n.设,则,∴在上单调递减,又,故,原不等式成立.★已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证:.【答案】(1)(2)见解析18\n当时,,记,18\n记函数的导函数为,则,故在上单调递增,所以,所以,不妨设,则,而,,有单调性知,即.★已知函数且函数图象上点处的切线斜率为.(1)试用含有的式子表示,并讨论的单调性;(2)对于函数图象上的不同两点如果在函数图象上存在点使得点处的切线,则称存在“跟随切线”.特别地,当时,又称存在“中值跟随切线”.试问:函数上是否存在两点使得它存在“中值跟随切线”,若存在,求出的坐标,若不存在,说明理由.【答案】(1)见解析(2)不存在18\n令,构造函数,则,则时,恒成立,故在上单调递增从而得出不存在试题解析:函数的定义域为,且,又,整理得.(1).1)当时,易知,时,故在上单调递增,在上单调递减.2)当地,令,解得或,则①当,即时,18\n在上恒成立,则在上递增.当时,在及上单调递增:在上单调递减.当时,在上递增.当时,在及上单调递增;在上递减.18\n点睛:对于导数问题,做题要特别注意在讨论时单调性受参数的影响,可以通过分析导数零点的大小来逐一分析,对于此题第二问的类型,要注意函数的构造和假设,分析函数单调性求最值从而得出结论.★已知函数在其定义域内有两个不同的极值点.(1)求的取值范围.(2)设的两个极值点为,证明.【答案】(1)(2)见解析18\n试题解析:(1)依题意,函数的定义域为,所以方程在有两个不同根.即方程在有两个不同根.转化为,函数与函数的图象在上有两个不同交点又,即时,,时,,所以在上单调增,在上单调减,从而.又有且只有一个零点是1,且在时,,在时,,所以由的图象,要想函数与函数的图象在上有两个不同交点,只需,即(2)由(1)可知分别是方程的两个根,即,,设,作差得,,即.原不等式等价于18\n令,则,,设,,,∴函数在上单调递增,∴,即不等式成立,故所证不等式成立.点睛:利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.★已知函数,A,B是曲线上两个不同的点.(Ⅰ)求的单调区间,并写出实数的取值范围;(Ⅱ)证明:.【答案】(Ⅰ)的取值范围是;(Ⅱ)见解析.18\n【方法点睛】本题主要考查利用导数研究函数的单调性及不等式的证明,属于难题.不等式证明问题是近年高考命题的热点,命题主要是和导数、绝对值不等式及柯西不等式相结合,导数部分一旦出该类型题往往难度较大,要准确解答首先观察不等式特点,结合已解答的问题把要证的不等式变形,并运用已证结论先行放缩,然后再化简或者进一步利用导数证明.18\n在高考创新试题层出不穷的大环境下,学生首先要掌握基本的知识方法和解题策略,对新题、难题的突破,更需在掌握双基的前提下,淡化特殊技巧、重视思想方法、去模式化的解题策略,以不变应万变,培养学生分析问题、解决问题的能力.只有学生学会自我分析,利用熟知的知识方法去解决各类未知的创新试题,教师才算成功培养学生解题思维,同时对学生认知的广阔性、逆向性也是一种需要.18
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学玩转压轴题专题3.2动点轨迹成曲线坐标关系是关键
高考数学玩转压轴题专题2.4极值计算先判断单调原则不能撼
高考数学玩转压轴题专题2.3极值点处单调变导数调控讨论参
高考数学玩转压轴题专题1.7极值点偏移第五招___函数的选取
高考数学玩转压轴题专题1.6极值点偏移第四招__含指数式的极值点偏移问题
高考数学玩转压轴题专题1.5极值点偏移第三招__含对数式的极值点偏移问题
高考数学玩转压轴题专题1.4极值点偏移第二招__含参数的极值点偏移问题
高考数学玩转压轴题专题1.3极值点偏移第一招__不含参数的极值点偏移问题
高考数学玩转压轴题专题1.2极值点偏移问题利器__极值点偏移判定定理
高考数学玩转压轴题专题1.1初识极值点偏移
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:51:49
页数:18
价格:¥3
大小:539.64 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划