首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
高考数学玩转压轴题专题2.1导数起源于切线曲切联系需熟练
高考数学玩转压轴题专题2.1导数起源于切线曲切联系需熟练
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
专题2.1导数起源于切线曲切联系需熟练【题型综述】导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率,即.【注】曲线的切线的求法:若已知曲线过点P(x0,y0),求曲线过点P的切线,则需分点P(x0,y0)是切点和不是切点两种情况求解.(1)当点P(x0,y0)是切点时,切线方程为y−y0=f′(x0)(x−x0);(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f(x1));第二步:写出过P′(x1,f(x1))的切线方程为y−f(x1)=f′(x1)(x−x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y−f(x1)=f′(x1)(x−x1),可得过点P(x0,y0)的切线方程.求曲线y=f(x)的切线方程的类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f′(x0)求出切点坐标(x0,y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P的切线即切线过点P,P不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.【典例指引】-19-\n例1.(2022全国新课标Ⅰ卷节选)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值.简析:(Ⅰ)由已知得,而=,=,∴=4,=2,=2,=2;例2.设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点,求证:.-19-\n例3.已知函数在点处的切线方程为.⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围.-19-\n⑶因为点不在曲线上,所以可设切点为.则.因为,所以切线的斜率为.则=,即.因为过点可作曲线的三条切线,所以方程有三个不同的实数解.所以函数有三个不同的零点.则.令,则或.02-19-\n++增极大值减极小值增则,即,解得.【同步训练】1.设函数,若函数在处的切线方程为.(Ⅰ)求实数的值;(Ⅱ)求函数在上的最大值.【思路引导】(Ⅰ)根据导数的几何意义,可知函数在处的导数即为切线的斜率,又点(1,)为切点,列出方程解出a,b的值;(Ⅱ)把a,b的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值.-19-\n∴在[,2)上单调递增,在(2,e]上单调递减,在处取得极大值这个极大值也是的最大值.又,所以函数在上的最大值为.2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值.【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m,-19-\nn;利用导数的几何意义求切线方程,先求f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式和,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值.所以函数在区间上的最大值为,最小值为-1.3.设函数的定义域为,若对任意,,都有,则称函数为“”函数.已知函数的图象为曲线,直线与曲线相切于.(1)求的解析式,并求的减区间;(2)设,若对任意,函数为“”函数,求实数-19-\n的最小值.【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,得出函数的解析式,利用导数解求出函数的单调减区间;对任意,函数为“”函数,等价于在上,,根据函数的在上的单调性,求出的最值,根据条件求出的范围,得出结论.∵在上为减函数,且,∴,∴在上为减函数,∴,,∴,得,又,∴.-19-\n4.已知函数.(1)求的单调区间;(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有;(3)若方程为实数)有两个正实数根且,求证:.【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点的坐标,利用导数求出切线方程,构造辅助函数,利用导数得到对于任意实数,有,即对任意实数,都有;(3)由(2)知,,求出方程的根,,由在单调递减,得到,同理得到,根据不等式性质则可证得.-19-\n(3)由(2)知,设方程的根为,可得,因为在单调递减,又由(II)知,所以.类似的,设曲线在原点处的切线为可得,对任意的,有即.设方程的根为,可得,因为在单调递增,且,因此,所以.5.已知函数在处的切线方程为.(1)若=,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;【思路引导】根据导数的几何意义,为切线的斜率,解出,写出的切线方程求出三角形的面积为定值.试题解析:证明:(1)因为f′(x)=,所以f′(3)=,-19-\n又g(x)=f(x+1)=ax+,设g(x)图象上任意一点P(x0,y0)因为g′(x)=a﹣,所以切线方程为y﹣(ax0+)=(a﹣)(x﹣x0)令x=0得y=;再令y=ax得x=2x0,故三角形面积S=|||2x0|=4,即三角形面积为定值.6.已知函数()(1)若在处取得极大值,求实数的取值范围;(2)若,且过点有且只有两条直线与曲线相切,求实数的值.【思路引导】(1)根据条件得,化简得,再根据有极值得中判别式大于零,进而得,最后列表分析极大值条件得解得实数的取值范围;(2)切线条数的确定决定于切点个数,所以设切点,转化为关于切点横坐标的方程,再利用导数研究函数有两零点,即极值为零,解得实数的值.-19-\n-19-\n点评:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验在的根的附近两侧的符号→下结论.-19-\n(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.7.已知函数,.(1)若直线是曲线与曲线的公切线,求;【思路引导】(1)设直线与切于点,与切于,处的切线方程为.处的切线方程为.根据这两条直线为同一条直线,可得关于和,解得和的值,从而可得结果;-19-\n点评:本题主要考查利用导数的几何意义及利用导数研究函数的单调性,属于难题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.-19-\n8.已知函数(为常数),其图像是曲线.(1)设函数的导函数为,若存在三个实数,使得与同时成立,求实数的取值范围;(2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.【思路引导】(1)由于存在唯一的实数,使得与同时成立,则,存在唯一的实数根,即存在唯一的实数根,就把问题转化为求函数最值问题;(2)假设存在常数,依据曲线在点处的切线与曲线交于另一点,曲线在点处的切线,得到关于的方程,有解则存在,无解则不存在.-19-\n,解得.故当时,存在常数,使得;当时,不存在常数使得.9.已知函数,.(1)若曲线与在公共点处有相同的切线,求实数的值;(2)当时,若曲线与在公共点处有相同的切线,求证:点唯一;(3)若,,且曲线与总存在公切线,求:正实数的最小值.【思路引导】(1)曲线与在公共点处有相同的切线,,解出即可;(2)设,由题设得,转化为关于的方程只有一解,进而构造函数转化为函数只有一个零点,利用导数即可证明;(3)设曲线在点-19-\n处的切线方程为,则只需使该切线与相切即可,也即方程组,只有一解即可,所以消去后,问题转化关于方程总有解,分情况借助导数进行讨论即可求得值.若,则,而,显然不成立,所以.-19-\n从而,方程可化为.令,则.∴当时,;当时,,即在上单调递减,在上单调递增.∴在的最小值为,所以,要使方程有解,只须,即.点评:本题主要考查导数的几何意义、利用导数研究函数的单调性,属于难题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.-19-
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高考数学玩转压轴题专题3.9曲线是否过定点可推可算可检验
高考数学玩转压轴题专题3.8欲证直线过定点结合特征方程验
高考数学玩转压轴题专题3.2动点轨迹成曲线坐标关系是关键
高考数学玩转压轴题专题3.1待定系数求方程几何转至代数中
高考数学玩转压轴题专题2.6欲证不等恒成立差值函数求值域
高考数学玩转压轴题专题2.4极值计算先判断单调原则不能撼
高考数学玩转压轴题专题2.3极值点处单调变导数调控讨论参
高考数学玩转压轴题专题2.2导数定调情况多参数分类与整合
高考数学玩转压轴题专题2.11已知不等恒成立分离参数定最值
高考数学玩转压轴题专题1.1初识极值点偏移
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 22:51:48
页数:19
价格:¥3
大小:508.03 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划