首页

【2023备考】高考数学各地名校试题解析分类汇编(一)10 排列、统计与概率 理

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

各地解析分类汇编:排列、统计与概率1.【云南省玉溪一中2013届高三上学期期中考试理】某教师一天上3个班级的课,每班一节,如果一天共9节课,上午5节、下午4节,并且教师不能连上3节课(第5和第6节不算连上),那么这位教师一天的课的所有排法有()A.474种B.77种C.462种D.79种【答案】A【解析】首先求得不受限制时,从9节课中任意安排3节,有种排法,其中上午连排3节的有种,下午连排3节的有种,则这位教师一天的课表的所有排法有504-18-12=474种,故选A.2.【云南省玉溪一中2013届高三上学期期中考试理】展开式中常数项为【答案】【解析】展开式的通项为,由,得,所以常数项为。3.【云南省昆明一中2013届高三新课程第一次摸底测试理】将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为。【答案】【解析】四名学生两名分到一组有种,3个元素进行全排列有种,甲乙两人分到一个班有种,所以有.4.【云南省玉溪一中2013届高三第四次月考理】某学习小组共12人,其中有五名是“三好学生”,现从该小组中任选5人参加竞赛,用表示这5人中“三好学生”的人数,则下列概率中等于的是()A.B.C.D.【答案】B-7-\n【解析】,,所以,选B.5.【云南省玉溪一中2013届高三第四次月考理】在的展开式中,含的项的系数是【答案】-30【解析】的展开式的通项为,的展开式的通项为,所以项为,所以的系数为.6.【云南省昆明一中2013届高三新课程第一次摸底测试理】在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是①平均数;②标准差;③平均数且标准差;④平均数且极差小于或等于2;⑤众数等于1且极差小于或等于1。A.①②B.③④C.③④⑤D.④⑤【答案】D【解析】①②③错,④对,若极差等于0或1,在的条件下显然符号指标,若极差等于2,则有下列可能,(1)0,1,2,(2)1,2,3,(3)2,3,4,(4)3,4,5,(5)4,5,6.在的条件下,只有(1)(2)(3)成立,符合标准。⑤正确,若众数等于1且极差小于等于4,则最大数不超过5,符合指标,故选D.7.【云南师大附中2013届高三高考适应性月考卷(三)理科】在区间[-6,6],内任取一个元素xO,若抛物线y=x2在x=xo处的切线的倾角为,则的概率为。【答案】【解析】当α∈时,斜率或,又,所以或,所以P=.8.【云南省玉溪一中2013届高三上学期期中考试理】(本小题满分12分)-7-\n某校从6名学生会干部(其中男生4人,女生2人)中选3人参加市中学生运动会志愿者。(Ⅰ)所选3人中女生人数为ξ,求ξ的分布列及数学期望。(Ⅱ)在男生甲被选中的情况下,求女生乙也被选中的概率【答案】解:(I)ξ得可能取值为0,1,2;由题意P(ξ=0)=,P(ξ=1)=,P(ξ=2)=…………3分∴ξ的分布列、期望分别为:ξ012pEξ=0×+1×+2×=1…………6分(II)设在男生甲被选中的情况下,女生乙也被选中的事件为C男生甲被选中的种数为,男生甲被选中,女生乙也被选中的种数为∴P(C)=…………11分在男生甲被选中的情况下,女生乙也被选中的概率为……12分9.【云南师大附中2013届高三高考适应性月考卷(三)理科】(本小题满分12分)某班将要举行篮球投篮比赛,比赛规则是:每位选手可以选择在A区投篮2次或选择在B区投篮3次,在A区每进一球得2分,不进球得0分;在B区每进一球得3分,不进球得0分,得分高的选手胜出.已知某参赛选手在A区和B区每次投篮进球的概率分别是和.(Ⅰ)如果以投篮得分的期望值高作为选择的标准,问该选手应该选择哪个区投篮?请说明理由;(Ⅱ)求该选手在A区投篮得分高于在B区投篮得分的概率.-7-\n【答案】解:(Ⅰ)设该选手在A区投篮的进球数为X,则,则该选手在A区投篮得分的期望为.………………………………………(3分)设该选手在B区投篮的进球数为Y,则,则该选手在B区投篮得分的期望为.所以该选手应该选择A区投篮.………………………………………………………(6分)(Ⅱ)设“该选手在A区投篮得分高于在B区投篮得分”为事件C,“该选手在A区投篮得4分且在B区投篮得3分或0分”为事件D,“该选手在A区投篮得2分且在B区投篮得0分”为事件E,则事件,且事件D与事件E互斥.…………(7分),………………………………………………………(9分),……………………………………………………………(11分),故该选手在A区投篮得分高于在B区投篮得分的概率为.……………………(12分)10.【云南省玉溪一中2013届高三第三次月考理】(本小题满分12分)一个口袋中有2个白球和个红球(,且),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖。(1)试用含的代数式表示一次摸球中奖的概率P;(2)若,求三次摸球恰有一次中奖的概率;(3)记三次摸球恰有一次中奖的概率为,当为何值时,取最大值。【答案】解:(1)一次摸球从个球中任选两个,有种选法,其中两球颜色相同有种选法;一次摸球中奖的概率............4分(2)若,则一次摸球中奖的概率是,三次摸球是独立重复实验,三次摸球中恰有一次中奖的概率是................8分(3)设一次摸球中奖的概率是,则三次摸球中恰有一次中奖的概率是,,-7-\n在是增函数,在是减函数,当时,取最大值................10分,,故时,三次摸球中恰有一次中奖的概率最大。..............12分11.【云南省玉溪一中2013届高三第四次月考理】(本题12分)现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X-Y|,求随机变量ξ的分布列与数学期望Eξ.【答案】解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.设“这4个人中恰有i人去参加甲游戏”为事件Ai(i=0,1,2,3,4),则P(Ai)=Ci4-i.(1)这4个人中恰有2人去参加甲游戏的概率P(A2)=C22=.(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则B=A3∪A4,由于A3与A4互斥,故P(B)=P(A3)+P(A4)=C3+C4=.所以,这4个人去参加甲游戏的人数大于去参加乙游戏的人数的概率为.(3)ξ的所有可能取值为0,2,4.由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=,P(ξ=2)=P(A1)+P(A3)=,-7-\nP(ξ=4)=P(A0)+P(A4)=.所以ξ的分布列是ξ024P随机变量ξ的数学期望Eξ=0×+2×+4×=12.【天津市天津一中2013届高三上学期一月考理】甲,乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲,乙各胜1局.(1)求甲获得这次比赛胜利的概率;(2)设ξ表示从第3局开始到比赛结束所进行的局数,求ξ的分布列及数学期望.【答案】解:(1)若甲胜,那么以后的情况有两种.一是后两局甲全胜,一是后三局甲胜两局.甲全胜的概率是0.6*0.6=0.36.后三局甲胜两局有二种情况,则概率是2*0.6*0.6*0.4=0.288.所以甲获胜的概率是0.36+0.288=0.648.(2)设进行的局数为ξ,则ξ的可取值为2,3,p(ξ=2)=0.6*0.6+0.4*0.4=0.52,p(ξ=3)=2*0.6*0.6*0.4+2*0.4*0.4*0.6=0.48.Eξ=2*0.52+3*0.48=2.4813.【天津市耀华中学2013届高三第一次月考理科】(本小题满分13分)口袋中有大小、质地均相同的9个球,4个红球,5个黑球,现在从中任取4个球。(1)求取出的球颜色相同的概率;(2)若取出的红球数设为,求随机变量的分布列和数学期望。【答案】-7-\n14.【山东省济南外国语学校2013届高三上学期期中考试理科】(本小题满分12分)以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。(Ⅰ)如果X=8,求乙组同学植树棵树的平均数;(Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望.【答案】解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为……………………………………….4分(Ⅱ)当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=同理可得所以随机变量Y的分布列为:Y1718192021PEY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×=19…………………………………….12分-7-

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 22:12:14 页数:7
价格:¥3 大小:422.50 KB
文章作者:U-336598

推荐特供

MORE