全国版2023高考数学一轮复习第8章立体几何第2讲空间点线面的位置关系试题1理含解析20230316185
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
第八章 立体几何第二讲 空间点、直线、平面之间的位置关系练好题·考点自测1.下列说法正确的是( )A.梯形一定是平面图形B.过三点确定一个平面C.三条直线两两相交确定一个平面D.若两个平面有三个公共点,则这两个平面重合2.[广东高考,5分]若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( ) A.l与l1,l2都不相交 B.l与l1,l2都相交C.l至多与l1,l2中的一条相交 D.l至少与l1,l2中的一条相交3.若∠AOB=∠A1O1B1,且OA∥O1A1,OA与O1A1的方向相同,则下列结论中正确的是( )A.OB∥O1B1且OB与O1B1的方向相同B.OB∥O1B1C.OB与O1B1不平行D.OB与O1B1不一定平行 4.[2017全国卷Ⅰ,6,5分]如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )ABCD5.[2020长春市第四次质量监测]已知正方体ABCD-A1B1C1D1的棱长为2,点N是棱CC1的中点,则异面直线AN与BC所成角的余弦值为 . 6.[2016全国卷Ⅱ,14,5分][理]α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有 .(填写所有正确命题的编号) \n拓展变式1.如图8-2-4所示,E,F分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,试画出平面BED1F与平面ABCD的交线.2.如图8-2-7为正方体表面的一种展开图,则在原正方体的四条线段AB,CD,EF,GH所在直线中,互为异面直线的有对.图8-2-73.[2018全国卷Ⅱ,9,5分][理]在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.56C.55D.224.[2021湖南四校联考]如图8-2-13所示,在正方体ABCD-A1B1C1D1中,N为底面ABCD的中心,P为线段A1D1上的动点(不包括两个端点),M为线段AP的中点,则下列结论错误的是( )A.CM与PN是异面直线B.CM>PNC.平面PAN⊥平面BDD1B1D.过P,A,C三点的正方体的截面一定是等腰梯形\n图8-2-13答案第二讲 空间点、直线、平面之间的位置关系1.A 对于A,因为两条平行直线确定一个平面,所以梯形可以确定一个平面,A正确;对于B,过不在同一条直线上的三点有且只有一个平面,注意三点不共线,B错误;对于C,三条直线两两相交,可以确定一个平面或三个平面,C错误;对于D,若两个平面有三个公共点,则这两个平面相交或重合,D错误.故选A.2.D 假设l与l1,l2都不相交,因为l与l1都在平面α内,于是l∥l1,同理l∥l2,于是l1∥l2,与已知矛盾,故l至少与l1,l2中的一条相交.故选D.3.D 在空间中,若两角相等,角的一边平行且方向相同,则另一边不一定平行,故选D.4.A 解法一 对于选项B,如图D8-2-1所示,C,D为正方体的两个顶点,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.选A.图D8-2-1解法二 对于选项A,作出正方体的底面的对角线,记对角线的交点为O(如图D8-2-2所示),连接OQ,则OQ∥AB,因为OQ与平面MNQ有交点,所以AB与平面MNQ有交点,即AB与平面MNQ不平行,故选A.\n5.23 因为AD∥BC,所以∠DAN为异面直线AN与BC所成的角,连接AC,在Rt△NAC中,因为N为CC1的中点,所以CN=1.AN=AC2+CN2=(22)2+12=3,连接DN,在Rt△ADN中,cos∠DAN=ADAN=23.图D8-2-26.②③④ 对于命题①,可运用长方体举反例证明其错误.如图D8-2-3,不妨设AA'所在直线为直线m,CD所在直线为直线n,ABCD所在的平面为α,ABC'D'所在的平面为β,显然这些直线和平面满足题目条件,但α⊥β不成立.故①错误.对于命题②,设过直线n的某平面与平面α相交于直线l,则l∥n,由m⊥α知m⊥l,从而m⊥n,故②正确.对于命题③,由平面与平面平行的性质可知,③正确.对于命题④,由平行的传递性及线面角的定义可知,④正确.图D8-2-31.如图D8-2-4所示,在平面AA1D1D内,D1F与DA不平行.分别延长D1F与DA,则D1F与DA的延长线必相交,设交点为M.因为M∈D1F,M∈DA,D1F⊂平面BED1F,DA⊂平面ABCD.所以M∈平面BED1F∩平面ABCD,又B∈平面BED1F∩平面ABCD,连接MB,则平面BED1F∩平面ABCD=MB.故直线MB为所求两平面的交线.2.3 还原后的正方体的示意图如图D8-2-5所示,其中AB与CD,AB与GH,EF与GH分别互为异面直线,共3对.\n图D8-2-53.C 解法一 如图D8-2-6,补上一个相同的长方体CDEF-C1D1E1F1,连接DE1,B1E1.易知AD1∥DE1,则∠B1DE1为异面直线AD1与DB1所成角或其补角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,所以DE1=DE2+EE12=12+(3)2=2,DB1=12+12+(3)2=5,B1E1=A1B12+A1E12=12+22=5,在△B1DE1中,由余弦定理,得cos∠B1DE1=22+(5)2-(5)22×2×5=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图D8-2-6解法二 如图D8-2-7,连接BD1,交DB1于点O,取AB的中点M,连接DM,OM.易知O为BD1的中点,所以AD1∥OM,则∠MOD为异面直线AD1与DB1所成角或其补角.因为在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,AD1=AD2+DD12=2,DM=AD2+(12AB)2=52,DB1=AB2+AD2+DD12=5,所以OM=12AD1=1,OD=12DB1=52,于是在△DMO中,由余弦定理,得cos∠MOD=12+(52)2-(52)22×1×52=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图D8-2-7\n解法三 以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,如图D8-2-8所示.由条件可知D(0,0,0),A(1,0,0),D1(0,0,3),B1(1,1,3),所以AD1=(-1,0,3),DB1=(1,1,3),则由向量夹角公式,得cos<AD1,DB1>=AD1·DB1|AD1|·|DB1| =225=55,即异面直线AD1与DB1所成角的余弦值为55,故选C.图D8-2-84.A 对于选项A,如图D8-2-9,连接NC,PC.在△PAC中,M为AP的中点,N为AC的中点,CN,PM交于点A,所以CM与PN共面,故A错误.对于选项B,因为P为线段A1D1上的动点(不包括两个端点),所以AC>AP.在△MAC中,CM2=AC2+AM2-2AC·AMcos∠MAC=AC2+14AP2-AC·AP·cos∠MAC.在△PAN中,PN2=AP2+AN2-2AP·ANcos∠PAN=AP2+14AC2-AP·ACcos∠PAN,则CM2-PN2=34(AC2-AP2)>0,所以CM>PN,故B正确.对于选项C,在正方体ABCD-A1B1C1D1中,易知AC⊥平面BDD1B1,即AN⊥平面BDD1B1,又AN⊂平面PAN,所以平面PAN⊥平面BDD1B1,故C正确.对于选项D,连接A1C1,在平面A1B1C1D1内作PK∥A1C1,交C1D1于K,连接KC.在正方体中,A1C1∥AC,所以PK∥AC,PK,AC共面,所以四边形PKCA就是过P,A,C三点的正方体的截面,AA1=CC1,A1P=C1K,所以AP=CK,即梯形PKCA为等腰梯形.故D正确.故选A.图D8-2-9
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)