首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
二轮专题
>
新高考浙江省2023高三数学下学期返校联考试题
新高考浙江省2023高三数学下学期返校联考试题
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/15
2
/15
剩余13页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
(新高考)浙江省2021届高三数学下学期返校联考试题考生须知:1.本试题卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号.3.所有答案必须写在答题卷上,写在试卷上无效.4.考试结束后,只需上交答题卷.如果事件互斥,那么如果事件相互独立,那么如果事件在一次试验中发生的概率是,那么次独立重复试验中事件棱柱的体积公式棱锥的体积公式其中表示棱锥的底面积,表示棱锥的高.棱台的体积公式其中分别表示棱台的上、下底面积,表示棱台的高.球的表面积公式其中表示球的半径.球的体积公式,其中表示球的半径.选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求1.已知集合,则()A.B.(0,3)C.(-3,4)D.(-1,4)2.已知是虚数单位,复数的虚部为,则复数的模为()A.B.C.D.3153.已知实满足约束条件,则目标函数的最小值是()A.-4B.-1C.D.-54.已知、是不同的直线,是不同的平面,且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.某几何体的三视图如图所示,若棱长为的正方体的外接球表面积为12,则该几何体的体积为()A.B.10C.D.6.函数的图像不可能是()A.B.15C.D.7.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为2,则双曲线的焦距的最小值是()A.16B.8C.4D.28.十三世纪意大利数学家列昂那多.斐波那契从兔子繁殖中发现了“斐波那契数列”,斐波那契数列满足以下关系:,记其前项和为,若为常数,则的值为()A.B.C.D.9.在正三棱台中,,是的中点,设与所成角分别为,则()A.B.C.D.10.已知实数满足,当取最小值时,的值为()15A.B.C.D.非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.设等差数列的公差为非零常数,且,若成等比数列,则公差_________,_________.12.圆的半径为_________,若其线与圆有公共点,则实数的取值范围是_________.13.二项式的展开式中,各项系数和为_________,含项的系数是_________.14.在中,则_________边长的取值范围为_________.15.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为,则的数学期望为_________.16.已知函数,若对于任意,均有,则的最大值是_________.17.已知,若存在,使得与夹角为,且,则的最小值为_________.三、解答题:本大题共5小题,共74分解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)已知,是的其中两个零点,且15(1)求的单调递增区间;(2)若,求的值.19.(本题满分15分)如图1,在矩形中,是中点,将沿直线翻折到的位置,使得,如图2.(1)求证:面PCE面ABCE;(2)求与面所成角的正弦值.20.(本题满分15分)已知数列的前项和满足(1)求证:数列是等比数列,并求的通项公式;(2)设的前项和为,求证:.21.(本题满分15分)已知椭圆,拋物线,点,斜率为的直线交拋物线于两点,且,经过点的斜率为的直线与椭圆相交于两点.15(1)若拋物线的准线经过点,求拋物线的标准方程和焦点坐标:(2)是否存在,使得四边形的面积取得最大值?若存在,请求出这个最大值及的值;若不存在,请说明理由.22.(本题满分15分)已知函数(1)讨论函数在其定义域内的单调性;(2)若对任意的恒成立,设,证明:在上存在唯一的极大值点,且高三数学参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.答案:D2.答案:B3.答案:A4.答案:B5.答案:A6.答案:C7.答案:C8.答案:B9.答案:D10.答案:A二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.答案:;12.答案:;13.答案:;14.答案:;1515.答案:16.答案:17.答案:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分14分)解:(1)是函数的两个零点,即是方程的两个实根,且令得的单调递增区间为(2).1519.(本题满分15分)法1证明:由图1可得在图2中又面PEC面ABCE面PCE面ABCE法2:证明:取中点由得又则故又面ABCE面PCE面ABCE(1)法1:由中点得,15又由(1)的法2可得,面设C到面的距离为又所以直线与面所成角的正弦值为法2:以点为原点,分别以直线为轴,轴,以经过点且垂直于平面的直线为轴建立直角坐标系.由题意可知,设面的法向量为15则令得所以所以直线与面所成角的正弦值为法3:证:面PMN面PAB面PMN交于,作面PAB由相似计算得面PAB,到面的距离=到面的距离又是中点,记为到面的距离到面的距离的2倍15又所以直线与面所成角的正弦值为20.(本题满分15分)解:(1)当时,时.两式相减,得则为常数数列是等比数列,首项为,(2)又当时15又故21.(本题满分15分)解:(1)抛物线的准线方程焦点坐标,则抛物线的标准方程为焦点(1,0)(2)设由得点在直线上,且且四边形的面积.由15得则因为所以由的斜率分别为由图知必过点(3,0)可设且故直线令则直线代入椭圆方程,得点到的距离,四边形的面积15当且仅当时面积最小为22.(本题满分15分)解:(1)由题意定义域为令则当时,当时,在上单调递减,在上单调递增即在和上均大于零在上单调递增,在上单调递增(2)易知,由对任意的恒成立,且,则(也可利用的几何意义或分离参数求解)此时令则当时,当时,在上单调递减,在上单调递增又存在唯一实数使得15在上递增,上递减,上递增在上唯一的极大值点,即为15
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
(新高考)浙江省2023高三语文下学期返校联考试题
(新高考)浙江省2023高三英语下学期返校联考试题
(新高考)浙江省2023高三地理下学期返校联考试题
新高考浙江省2023高三生物下学期返校联考试题
新高考浙江省2023高三物理下学期返校联考试题
新高考浙江省2023高三政治下学期返校联考试题
新高考浙江省2023高三历史下学期返校联考试题
新高考浙江省2023高三化学下学期返校联考试题
浙江省“温州八校”2022届高三语文返校联考卷(含解析)
浙江省七彩阳光新高考研究联盟2022-2023学年高三上学期返校联考 语文 word版含答案
文档下载
收藏
所属:
高考 - 二轮专题
发布时间:2022-08-25 21:51:06
页数:15
价格:¥3
大小:2.00 MB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划