首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
中考
>
二轮专题
>
2022中考数学第二部分专题综合强化专题三圆的相关证明与计算针对训练
2022中考数学第二部分专题综合强化专题三圆的相关证明与计算针对训练
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/11
2
/11
剩余9页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第二部分 专题三类型1 与圆有关的角平分线问题1.(2022·衡阳)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC,AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)(1)证明:如答图,连接OD,答图∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE.∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线.(2)解:如答图,作OG⊥AE于点G,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OD=GE=CG+CE=2+2=4,∠DOG=90°,在Rt△AOG中,∵OA=2AG,∴∠AOG=30°,∴∠BOD=60°,则的长度为=.2.(2022·赤峰)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,点O11\n在AB上,⊙O经过A,D两点,交AC于点E,交AB于点F.(1)求证:BC是⊙O的切线;(2)若⊙O的半径是2cm,E是的中点,求阴影部分的面积.(结果保留π和根号)(1)证明:如答图,连接OD,答图∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODB=∠C=90°,∴OD⊥BC,∴BC是⊙O的切线.(2)解:连接OE,OE交AD于K,∵=,∴OE⊥AD.∵∠OAK=∠EAK,AK=AK,∠AKO=∠AKE=90°,∴△AKO≌△AKE(ASA),∴AO=AE=OE,∴△AOE是等边三角形,∴∠AOE=60°,∴S阴影=S扇形OAE-S△AOE=-×22=-.3.(2022·咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.(1)证明:如答图,连接OD,∵AC是⊙O的直径,∴∠ABC=90°.11\n答图∵BD平分∠ABC,∴∠ABD=45°,∴∠AOD=90°.∵DE∥AC,∴∠ODE=∠AOD=90°,∴DE是⊙O的切线.(2)解:∵在Rt△ABC中,AB=2,BC=,∴AC==5,∴OD=.∵DE∥AC,∴∠CEG=∠ACB,∴tan∠CEG=tan∠ACB,∴=,即=,解得GE=,∴DE=DG+GE=.4.(2022·莱芜)如图,已知A,B是⊙O上两点,△OAB外角的平分线交⊙O于另一点C,CD⊥AB交AB的延长线于D.(1)求证:CD是⊙O的切线;(2)E为的中点,F为⊙O上一点,EF交AB于G,若tan∠AFE=,BE=BG,EG=3,求⊙O的半径.(1)证明:连接OC,如答图,答图∵BC平分∠OBD,∴∠OBC=∠CBD.∵OB=OC,∴∠OBC=∠OCB,11\n∴∠OCB=∠CBD,∴OC∥AD,而CD⊥AB,∴OC⊥CD,∴CD是⊙O的切线.(2)解:连接OE交AB于H,如答图,∵E为的中点,∴OE⊥AB.∵∠ABE=∠AFE,∴tan∠ABE=tan∠AFE=,∴在Rt△BEH中,tan∠HBE==,∴设EH=3x,BH=4x,∴BE=5x.∵BG=BE=5x,∴GH=x,在Rt△EHG中,x2+(3x)2=(3)2,解得x=3,∴EH=9,BH=12,设⊙O的半径为r,则OH=r-9,在Rt△OHB中,(r-9)2+122=r2,解得r=,即⊙O的半径为.类型2 与圆有关的双切线问题1.(2022·北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.(1)证明:如答图,设PO与DC交于点Q,∵PC,PD与⊙O相切于C,D,∴PC=PD,OP平分∠CPD,在等腰△PCD中,PC=PD,PQ平分∠CPD,∴PQ⊥CD于Q,即OP⊥CD.11\n(2)解:如答图,连接OC,OD,答图∵OA=OD,∴∠OAD=∠ODA=50°,∴∠AOD=180°-∠OAD-∠ODA=80°.同理:∠BOC=40°,∴∠COD=180°-∠AOD-∠BOC=60°,在等腰△COD中,OC=OD,OQ⊥CD,∴∠DOQ=∠COD=30°.∵PD与⊙O相切于D,∴OD⊥DP,∴∠ODP=90°,在Rt△ODP中,∠ODP=90°,∠POD=30°,∴OP====.2.(2022·黔西南)如图,CE是⊙O的直径,BC切⊙O于点C,连接OB,作ED∥OB交⊙O于点D,BD的延长线与CE的延长线交于点A.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为1,tan∠DEO=,tan∠A=,求AE的长.(1)证明:连接OD,如答图,答图11\n∵ED∥OB,∴∠1=∠4,∠2=∠3,∵OD=OE,∴∠3=∠4,∴∠1=∠2.在△DOB与△COB中,∴△DOB≌△COB(SAS),∴∠ODB=∠OCB.∵BC切⊙O于点C,∴∠OCB=90°,∴∠ODB=90°,∴AB是⊙O的切线.(2)解:∵∠DEO=∠2.∴tan∠DEO=tan∠2=.∵⊙O的半径为1,∴OC=1,∴BC=.∵tan∠A==,∴AC=4BC=4,∴AE=AC-CE=4-2.3.(2022·武汉)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB,PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.(1)证明:如答图,连接OP,OB.答图∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°.在△PAO和△PBO中,∴△PAO≌△PBO(SSS).∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)解:设OP交AB于K.∵AC是⊙O的直径,11\n∴∠ABC=90°,∴AB⊥BC.∵PA,PB都是⊙O的切线,∴PA=PB,∠APO=∠BPO.∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC.∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a.∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a.∵△PAK∽△POA,∴PA2=PK·PO,设PK=x,则有x2+ax-4a2=0,解得x=a(负根舍去),∴PK=a.∵PK∥BC,∴==.4.(2022·襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.(1)证明:如答图,连接OE,OC,BE.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°.∵OE为⊙O的半径,∴CD为⊙O的切线.∵AD切⊙O于点A,∴DA=DE.(2)解:如答图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,11\n答图∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵FC==2,∴BC+AD=BF+FC+AD=AD+FC+AD=2AD+2=4,∴AD=,∴BC=BF+FC=AD+FC=+2=3,在Rt△OBC中,tan∠BOC===,∴∠BOC=60°,在△OEC和△OBC中,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影=S四边形BCEO-S扇形OBE=2×BC·OB-=9-3π.5.(2022·新疆)如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.(1)求证:PB是⊙O的切线;(2)若OC=3,AC=4,求sinE的值.(1)证明:如答图,连接OB.答图∵PO⊥AB,∴AC=BC,∴PA=PB,在△PAO和△PBO中,∴△PAO≌△PBO(SSS),∴∠OBP=∠OAP=90°,11\n∴PB是⊙O的切线.(2)解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°.∵∠ACO=90°,∴BD∥PO,且BD=2OC=6,在Rt△ACO中,OC=3,AC=4,∴AO=5,在Rt△ACO和Rt△PAO中,∴△ACO∽△PAO,∴=,=,∴PO=,PA=,∴PB=PA=,在△EPO与△EBD中,∵BD∥PO,∴△EPO∽△EBD,∴=,解得EB=,PE=,∴sinE==.类型3 与圆有关的弦切角问题1.(2022·金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.(1)证明:如答图,连接OD,11\n答图∵OB=OD,∴∠3=∠B.∵∠B=∠1,∴∠1=∠3.∵在Rt△ACD中,∠1+∠2=90°,∴∠4=180°-(∠2+∠3)=90°,∴OD⊥AD,∴AD是⊙O的切线.(2)解:设⊙O的半径为r,在Rt△ABC中,AC=BC·tanB=4,根据勾股定理得AB==4,∴OA=4-r.在Rt△ACD中,∵tan∠1=tanB=,∴CD=AC·tan∠1=2,根据勾股定理得AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4-r)2=r2+20,解得r=.即⊙O的半径为.2.(2022·玉林)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°.∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,11\n在Rt△ABC中,∵tan∠B==,AB=8,∴AC=4.在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8-x)2+42,解得x=5,∴CE=5.3.(2022·齐齐哈尔)如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠A=∠DEB,∠DEB=∠DBC,∴∠A=∠DBC,∴∠DBC+∠ABD=90°,∴BC是⊙O的切线.(2)解:如答图,连接OD,∵BF=BC=2,且∠ADB=90°,答图∴∠CBD=∠FBD.∵OE∥BD,∴∠FBD=∠OEB.∵OE=OB,∴∠OEB=∠OBE,∴∠CBD=∠DBE=∠OBE=∠ABC=×90°=30°,∴∠C=60°,∴AB=BC=2,∴⊙O的半径为,∠BOD=60°,∴S阴影=S扇形DOB-S△DOB=π×3-×3=-.11
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
云南省2022中考英语第二部分语法专题突破专题4数词针对训练
云南省2022中考英语第二部分语法专题突破专题3冠词针对训练
云南省2022中考英语第二部分语法专题突破专题14情景交际针对训练
云南省2022中考英语第二部分语法专题突破专题13复合句针对训练
云南省2022中考英语第二部分语法专题突破专题11动词的时态和语态针对训练
云南省2022中考英语第二部分语法专题突破专题10情态动词针对训练
云南专用版2022版中考化学第2部分专题综合强化专题6常见的化学计算真题精练
中考新突破云南省2022中考化学综合强化演练第二部分专题6计算题
2022中考数学第二部分专题综合强化专题四二次函数的综合探究针对训练
2022中考数学第二部分专题综合强化专题二实际应用型问题针对训练
文档下载
收藏
所属:
中考 - 二轮专题
发布时间:2022-08-25 21:31:42
页数:11
价格:¥3
大小:276.43 KB
文章作者:U-336598
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划