首页

【中考12年】浙江省台州市2001-2022年中考数学试题分类解析 专题4 图形的变换

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

【中考12年】浙江省台州市2022-2022年中考数学试题分类解析专题4图形的变换一、选择题1.(2022年浙江舟山、嘉兴、台州、丽水4分)一个滑轮起重装置如图所示,滑轮半径是10cm,当重物上升10cm时,滑轮的一条半径OA绕轴心O,绕逆时针方向旋转的角度约为(假设绳索与滑轮之间没有滑动,π取3.14,结果精确到1°)【】A.115°B.160°C.57°D.29°2.(2022年浙江台州4分)一个圆锥的底面半径长为4cm,母线长为5cm,则圆锥的侧面积为【】(A)20cm2(B)40cm2(C)20πcm2(D)40πcm23.(2022年浙江台州4分)若圆锥的底面半径为3㎝,母线长为5㎝,则圆锥的侧面积是【】A、15㎝2 B、30㎝2 C、㎝2  D、㎝2\n4.(2022年浙江温州、台州4分)如图,点B在圆锥母线VA上,且VB=VA,过点B作平行与底面的平面截得一个小圆锥的侧面积为S1,原圆锥的侧面积为S,则下列判断中正确的是【】(A)(B)(C)(D)5.(2022年浙江台州4分)下图几何体的主视图是【】A.B.C.D.6.(2022年浙江台州4分)如图,若正六边形ABCDEF绕着中心O旋转角得到的图形与原来的图形重合,则最小值为【】\nA.B.C.D.7.(2022年浙江台州4分)一个几何体的展开图如图所示,则该几何体的顶点有【】A.10个B.8个C.6个D.4个8.(2022年浙江台州4分)左图是由四个小正方体叠成的一个立体图形,那么它的俯视图是【】A.B.C.D.9.(2022年浙江台州4分)课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在【】\nA.第3天B.第4天C.第5天D.第6天10.(2022年浙江台州4分)如图,由三个相同小正方体组成的立体图形的主视图是【】A.B.C.D.11.(2022年浙江台州4分)下列立体图形中,侧面展开图是扇形的是【】A.B.C. D.12.(2022年浙江台州4分)下列四个几何体中,主视图是三角形的是【】A.B.C.D.13.(2022年浙江台州4分)如图是一个由3个相同的正方体组成的立体图形,则它的主视图为【】A.B.C.D.\n二、填空题1.(2022年浙江温州、台州5分)把一个边长为2㎝的立方体截成八个边长为1㎝的小立方体,至少需截▲次。2.(2022年浙江温州、台州5分)已知矩形ABCD的长AB=4,宽AD=3,按如图放置在直线AP上,然后不滑动地转动,当它转动一周时(A→A′),顶点A所经过的路线长等于▲。3.(2022年浙江台州5分)如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF=▲°.\n4.(2022年浙江台州5分)(1)善于思考的小迪发现:半径为,圆心在原点的圆(如图1),如果固定直径AB,把圆内的所有与轴平行的弦都压缩到原来的倍,就得到一种新的图形椭圆(如图2),她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”“化曲为直,以直代曲”的方法.正确地求出了椭圆的面积,她求得的结果为 ▲ .(2)(本小题为选做题,做对另加3分,但全卷满分不超过150分)小迪把图2的椭圆绕轴旋转一周得到一个“鸡蛋型”的椭球.已知半径为的球的体积为,则此椭球的体积为 ▲ .5.(2022年浙江台州5分)善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数\n量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB⊥弦CD于E),设AE=x,BE=y,他用含x,y的式子表示图中的弦CD的长度,通过比较运动的弦CD和与之垂直的直径AB的大小关系,发现了一个关于正数x,y的不等式,你也能发现这个不等式吗?写出你发现的不等式▲.6.(2022年浙江台州5分)如图,三角板ABC中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C逆时针旋转,当点A的对应点A'落在AB边的起始位置上时即停止转动,则点B转过的路径长为 ▲(结果保留π).7.(2022年浙江台州5分)如图,菱形ABCD中,AB=2,∠C=60°,菱形ABCD在直线l上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过36次这样的操作菱形中心O所经过的路径总长为(结果保留π)▲.\n8.(2022年浙江台州5分)点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80º,则∠CGE=▲.9.(2022年浙江台州5分)如图,将正方形ABCD沿BE对折,使点A落在对角线BD上的A′处,连接A′C,则∠BA′C=▲度.\n三、解答题1.(2022年浙江温州、台州12分)如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E。(1)求四边形CDFP的周长;(2)请连结OF,OP,求证:OF⊥OP;(3)延长DC,FP相交于点G,连结OE并延长交直线DC于H(如图乙)。是否存在点P使△EFO∽△EHG(其对应关系是EE,FH,OG)?如果存在,试求此时的BP的长;如果不存在,请说明理由。\n2.(2022年浙江台州8分)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.3.(2022年浙江台州14分)如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在轴上,点C在轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠\n,且.(1)判断与是否相似?请说明理由;(2)求直线CE与轴交点P的坐标;(3)是否存在过点D的直线,使直线、直线CE与轴所围成的三角形和直线、直线CE与轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.\n4.(2022年浙江台州8分)如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABO的三个顶点A,B,O都在格点上.(1)画出△ABO绕点O逆时针旋转90°后得到的三角形;(2)求△ABO在上述旋转过程中所扫过的面积.\n5.(2022年浙江台州14分)如图,在矩形ABCD中,AB=9,AD=,点P是边BC上的动点(点P不与点B,点C重合),过点P作直线PQ∥BD,交CD边于Q点,再把△PQC沿着动直线PQ对折,点C的对应点是R点,设CP的长度为x,△PQR与矩形ABCD重叠部分的面积为y.(1)求∠CQP的度数;(2)当x取何值时,点R落在矩形ABCD的AB边上;(3)①求y与x之间的函数关系式;②当x取何值时,重叠部分的面积等于矩形面积的?\n当点R在矩形ABCD的外部时(如图2),CP的范围是<x<,此时,△PQR与矩形ABCD重叠部分的面积为四边形PQEF的面积,等于△PQR的面积减去△EFRR的面积,即△CPQ的面积减去△EFRR的面积。\n6.(2022年浙江台州12分)如图1,Rt△ABC≌Rt△EDF,∠ACB=∠F=90°,∠A=∠E=30°.△EDF绕着边AB的中点D旋转,DE,DF分别交线段AC于点M,K.(1)观察:①如图2、图3,当∠CDF=0°或60°时,AM+CK▲MK(填“>”,“<”或“=”).②如图4,当∠CDF=30°时,AM+CK▲MK(只填“>”或“<”).(2)猜想:如图1,当0°<∠CDF<60°时,AM+CK▲MK,证明你所得到的结论.\n(3)如果,请直接写出∠CDF的度数和的值.\n7.(2022年浙江台州14分)如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?\n

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:14:28 页数:18
价格:¥3 大小:1.06 MB
文章作者:U-336598

推荐特供

MORE