首页

中考数学培优满分专题突破专题4函数方案与决策

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

专题4 函数方案与决策常考类型分析专题类型突破类型1利用一次函数进行方案设计与决策【例1】某景区内的环形路是边长为800米的正方形ABCD,如图1和图2.现有1号、2号两游览车分别从出口A和景点C同时出发,1号车顺时针、2号车逆时针沿环形路连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车的速度均为200米/分.探究 设行驶时间为t分.(1)当0≤t≤8时,分别写出1号车、2号车在左半环线离出口A的路程y1,y2(米)与t(分)的函数关系式,并求出当两车相距的路程是400米时t的值;(2)t为何值时,1号车第三次恰好经过景点C?并直接写出这一段时间内它与2号车相遇过的次数.发现 如图2,游客甲在BC上一点K(不与点B,C重合)处候车,准备乘车到出口A,设CK=x米.情况一:若他刚好错过2号车,便搭乘即将到来的1号车;情况二:若他刚好错过1号车,便搭乘即将到来的2号车.比较哪种情况用时较多?(含候车时间)决策 已知游客乙在DA上从D向出口A走去,步行的速度是50米/分.当行进到DA上一点P(不与点D,A重合)时,刚好与2号车迎面相遇.(1)他发现,乘1号车会比乘2号车到出口A用时少,请你简要说明理由;11\n(2)设PA=s(0<s<800)米.若他想尽快到达出口A,根据s的大小,在等候乘1号车还是步行这两种方式中,他该如何选择?【思路分析】探究:(1)由“路程=速度×时间”可以得出y1,y2(米)与t(分)的函数关系式,再利用关系式列方程就可以求出两车相距的路程是400米时t的值;(2)求出1号车第3次经过景点C的路程,进一步求出行驶的时间,由两车第一次相遇后每相遇一次需要的时间就可以求出相遇次数;发现:计算出情况一的用时和情况二的用时,再进行大小比较就可以得出结论;决策:(1)根据题意可以得出游客乙在AD上等待乘1号车到A出口的路程小于2个边长,而乘2号车到A出口的路程大于3个边长,进而得出结论;(2)分类讨论,若步行比乘1号车的用时少,就有就可以分情况得出结论.解:探究:(1)由题意,得y1=200t,y2=-200t+1600.相遇前相距400米时,y2-y1=400,即-200t+1600-200t=400.解得t=3.相遇后相距400米时,y1-y2=400,即200t-(-200t+1600)=400.解得t=5.综上所述,当两车相距的路程是400米时,t的值为3或5.(2)当1号车第三次恰好经过景点C时,由题意,得200t=800×2+800×4×2.解得t=40.这一段时间内它与2号车相遇过5次.决策:(1)由题意知,此时1号车正行驶在CD边上,乘1号车到A出口的路程小于2个边长,而乘2号车到A出口的路程大于3个边长,所以乘1号车用时比2号车少(两车速相同).(2)若步行比乘1号车用时少,则解得s<320.∴当0<s<320时,选择步行.同理可得,当320<s<800时,选择乘1号车.当s=320时,选择步行或乘1号车.满分技法►一次函数决策型应用题通常是从函数图象或图表中得出需要的信息,然后利用待定系数法求出一次函数解式.通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.11\n满分变式必练►1.某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8天就可以完成该项工程;若由甲队先单独做3天后,剩余部分由乙队单独做需要18天才能完成.(1)求甲、乙两队工作效率分别是多少?(2)甲队每天工资3000元,乙队每天工资1400元,学校要求在12天内将学生公寓楼装修完成,若完成该工程甲队工作m天,乙队工作n天,求学校需支付的总工资w(元)与甲队工作天数m(天)的函数关系式,并求出m的取值范围及w的最小值.2.我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg-5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;11\n(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.解:(1)方案A:函数表达式为y=5.8x;方案B:函数表达式为y=5x+2000.(2)由题意,得5.8x<5x+2000.解得x<2500.则当购买量x的范围是2000≤x<2500时,选用方案A比方案B付款少.(3)他应选择方案B,理由如下:方案A:苹果数量为20000÷5.8≈3448(kg);方案B:苹果数量为(20000-2000)÷5=3600(kg),∵3600>3448,∴方案B买的苹果多.3.“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=    ,b=    ,m=    ;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.11\n类型2反比例函数的应用【例2】某公司从2022年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2022年已投入资金5万元.①预计生产成本每件比2022年降低多少万元?②若打算在2022年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元)【思路分析】(1)根据实际题意和数据特点分情况求解,根据排除法可知其为反比例函数,利用待定系数法求解即可;(2)直接把x=5万元代入函数解析式求解;②直接把y=3.2万元代入函数解析式求解.11\n满分技法►函数应用的解题关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,要注意用排除法确定函数的类型.再根据自变量的值求出对应的函数值.同时结合图象确定增减性,确定自变量或函数的值或取值范围.满分变式必练►1.丽水某公司将“丽水山耕”农副产品运往杭州市场进行销售,记汽车行驶时间为t小时,平均速度为v千米/时(汽车行驶速度不超过100千米/时).根据经验,v,t的一组对应值如下表:(1)根据表中的数据,求出平均速度v(千米/时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从丽水出发,能否在上午10:00之前到达杭州市场?请说明理由;(3)若汽车到达杭州市场的行驶时间t满足3.5≤t≤4,求平均速度v的取值范围.2.嘉淇同学家的饮水机中原有水的温度为20℃,其工作过程如图所示,在一个由20℃加热到100℃再降温到20℃的过程中,水温记作y(℃),从开始加热起时间变化了x(分钟),加热过程中,y与x满足一次函数关系,水温下降过程中,y与x成反比例,当x=20时,y=40.(1)写出饮水机水温的下降过程中y与x的函数关系式,并求出x为何值时,y=100;(2)求加热过程中y与x之间的函数关系式;(3)求当x为何值时,y=80.问题解决若嘉淇同学上午八点将饮水机通电开机后即外出散步,预计九点前回到家中,若嘉淇想喝到不低于50℃的水,直接写出外出时间m(分钟)的取值范围.11\n问题解决:外出时间m(分钟)的取值范围为3≤m≤16或43≤m≤56.3.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值;(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.11\n类型3利用二次函数进行方案设计与决策【例3】某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元).(利润=销售额-成本-广告费)若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳元的附加费,设月利润为w外(元).(利润=销售额-成本-附加费)11\n(1)当x=1000时,y=   元/件,w内=    元;(2)分别求出w内,w外与x间的函数关系式;(不必写x的取值范围)(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?【思路分析】解题时可充分利用已经提供的函数关系式、国内销售和国外销售的利润计算公式以及抛物线的顶点公式,理清数量关系,降低解题难度.(4)当x=5000时,w内=337500,w外=-5000a+500000.若w内<w外,则a<32.5;若w内=w外,则a=32.5;若w内>w外,则a>32.5.所以,当10≤a<32.5时,选择在国外销售;当a=32.5时,在国外和国内销售都一样;当32.5<a≤40时,选择在国内销售.易错提示►解题时需注意不要忽视成本a(元/件)的取值范围10≤a≤40,否则会影响对第(3)小题的结果进行合理取舍,以及第(4)小题不同情况下成本范围的确定.满分技法►应用二次函数解决决策性问题时,首先建立二次函数的关系模型,结合实际具体情况得到方程或不等式的自变量的取值范围,利用二次函数的图象特征或二次函数增减性,从而确定在自变量取值范围内的函数最大值(最小值),进而确定最佳方案(或进行合理性决策).11\n满分变式必练►1.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.2.为衡量某种车辆的性能,研究制定了行驶指数P,P=K+1000,而K的大小与平均速度v(km/h)和行驶路程s(km)有关(不考虑其他因素),K由两部分的和组成,一部分与v2成正比,另一部分与sv成正比.在实验中得到了表中的数据:(1)用含v和s的式子表示P;(2)当P=500,而v=50时,求s的值;(3)当s=180时,若P值最大,求v的值.11\n3.宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?11

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 21:03:32 页数:11
价格:¥3 大小:782.01 KB
文章作者:U-336598

推荐特供

MORE