首页

天津市静海县2022年中考数学一模试题(解析版) 新人教版

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/21

2/21

剩余19页未读,查看更多内容需下载

2022年天津市静海县中考数学一模试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•随州)cos30°=(  ) A.B.C.D.考点:特殊角的三角函数值.专题:计算题.分析:直接根据cos30°=进行解答即可.解答:解:因为cos30°=,所以C正确.故选C.点评:本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键. 2.(3分)(2022•静海县一模)计算的结果是(  ) A.2B.±2C.﹣2D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义. 3.(3分)(2022•静海县一模)在下列四个图案中,既是轴对称图形,又是中心对称图形是(  ) A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案.解答:解:A、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,也是中心对称图形,故此选项正确;B、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.C、此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180°不能与原图形重合,不是中心对称图形,故此选项错误;21\nD、此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的定义,熟练掌握其定义是解决问题的关键. 4.(3分)(2022•静海县一模)下列各式计算正确的是(  ) A.a2+2a3=3a5B.(2b2)3=6b5C.(3xy)2÷(xy)=3xyD.2x•3x5=6x6考点:整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据积的乘方的性质、单项式除法和单项式乘法运算法则利用排除法求解.解答:解:A、a2与2a3不是同类项的不能合并,故本选项错误;B、应为(2b2)3=8b6,故本选项错误;C、应为(3xy)2÷(xy)=9xy,故本选项错误;D、2x•3x5=6x6,正确;故选D.点评:本题考查积的乘方,单项式的除法法则,单项式的乘法法则,熟练掌握运算法则是解题的关键. 5.(3分)(2022•盐城模拟)四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选(  )甲乙丙丁7887S2111.21.8 A.甲B.乙C.丙D.丁考点:方差.分析:此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.解答:解:由于乙的方差较小、平均数较大,故选乙.故选B.点评:本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 6.(3分)(2022•静海县一模)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为3cm,则圆心O到弦CD的距离为(  )21\n A.cmB.3cmC.3cmD.6cm考点:圆周角定理;含30度角的直角三角形;垂径定理.专题:计算题.分析:根据垂径定理知圆心O到弦CD的距离为OE;由圆周角定理知∠COB=2∠CDB=60°,已知半径OC的长,即可在Rt△OCE中求OE的长度.解答:解:连接CB.∵AB是⊙O的直径,弦CD⊥AB于点E,∴圆心O到弦CD的距离为OE;∵∠COB=2∠CDB(同弧所对的圆周角是所对的圆心角的一半),∠CDB=30°,∴∠COB=60°;在Rt△OCE中,OC=3cm,OE=OC•cos∠COB,∴OE=.故选A.点评:本题考查了垂径定理、圆周角定理及解直角三角形的综合应用.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解. 7.(3分)(2022•静海县一模)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为(  ) A.cm2B.2πcm2C.cm2D.cm2考点:圆锥的计算;由三视图判断几何体.分析:根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=(底面周长×母线长)÷2可计算出结果.解答:解:由题意得底面直径为2,母线长为2,21\n∴几何体的侧面积为×2×2π=2π,故选B.点评:此题主要考查了由三视图判断几何体,以及圆锥的侧面积公式的应用,关键是找到等量关系里相应的量. 8.(3分)(2022•静海县一模)如图,▱ABCD的周长为16cm,AC与BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为(  ) A.4cmB.6cmC.8cmD.10cm考点:平行四边形的性质;线段垂直平分线的性质.分析:根据平行四边形的对角线互相平分,可得OA=OC,又因为OE⊥AC,可得OE是线段AC的垂直平分线,可得AE=CE,即可求得△DCE的周长.解答:解:∵四边形ABCD为平行四边形,∴OA=OC;∵OE⊥AC,∴AE=EC;∵▱ABCD的周长为16cm,∴CD+AD=8cm;∴△DCE的周长=CD+CE+DE=CD+AD=8cm.故选C.点评:此题主要考查平行四边形的性质和中垂线的性质. 9.(3分)(2022•静海县一模)如图,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM的面积y与点P经过的路程x之间的函数关系用图象表示大致是(  )21\n A.B.C.D.考点:动点问题的函数图象.专题:压轴题.分析:根据每一段函数的性质,确定其解析式,特别注意根据函数的增减性,以及几个最值点,确定选项比较简单.解答:解:①当P在AB上运动时,所求三角形底为AP,高为M到AB的距离也就是AD长度因此S△APM=AD•AP=x,函数关系为:y=x(0<x≤1);②当P在BC上运动时,S△APM=S梯形ABCM﹣S△ABP﹣S△PCMS△ABP=AB•BP,BP=x﹣1,则S△ABP=x﹣,S△PCM=PC•CM,CM=BC=,PC=3﹣x,S△PCM=,S梯形ABCM=(AB+CM)•BC=,因此S△APM=﹣﹣=﹣+(1<x≤3);③当P在CM上运动时,S△APM=CM•AD,CM=﹣x,S△APM=(﹣x)×2=﹣x+(3<x<7/2).故该图象分三段.故选B.21\n点评:本题考查了动点问题的函数图象,难度适中,解答本题的关键是分段讨论并求出x的不同范围内的函数图象. 10.(3分)(2022•杭州)已知抛物线y=k(x+1)(x﹣)与x轴交于点A,B,与y轴交于点C,则能使△ABC为等腰三角形的抛物线的条数是(  ) A.2B.3C.4D.5考点:抛物线与x轴的交点.专题:压轴题;推理填空题.分析:整理抛物线解析式,确定出抛物线与x轴的一个交点A和y轴的交点C,然后求出AC的长度,再分①k>0时,点B在x轴正半轴时,分AC=BC、AC=AB、AB=BC三种情况求解;②k<0时,点B在x轴的负半轴时,点B只能在点A的左边,只有AC=AB一种情况列式计算即可.解答:解:y=k(x+1)(x﹣)=(x+1)(kx﹣3),所以,抛物线经过点A(﹣1,0),C(0,﹣3),AC===,点B坐标为(,0),①k>0时,点B在x正半轴上,若AC=BC,则=,解得k=3,若AC=AB,则+1=,解得k==,若AB=BC,则+1=,解得k=;②k<0时,点B在x轴的负半轴,点B只能在点A的左侧,只有AC=AB,则﹣1﹣=,解得k=﹣=﹣,所以,能使△ABC为等腰三角形的抛物线共有4条.故选C.21\n点评:本题考查了抛物线与x轴的交点问题,根据抛物线的解析式确定出抛物线经过的两个定点是解题的关键,注意分情况讨论. 二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)(2022•北京)分解因式:ab2﹣4ab+4a= a(b﹣2)2 .考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.解答:解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 12.(3分)(2022•天津)若分式的值为0,则x的值等于 1 .考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 21\n13.(3分)(2022•静海县一模)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种的可能性相同,则两辆汽车经过十字路口全部继续直行的概率为  .考点:列表法与树状图法.专题:图表型.分析:画出树状图,然后根据概率公式解答即可.解答:解:根据题意,画出树状图如下:一共有9种情况,两辆汽车经过十字路口全部继续直行的有1种情况,所以,P(两辆汽车经过十字路口全部继续直行)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 14.(3分)(2022•静海县一模)如图,已知△ABC中,∠ABC=45°,AD⊥BC于点D,BE⊥AC于点E,F是AD和BE的交点,CD=4,则线段DF的长度为 4 .考点:全等三角形的判定与性质.分析:求出AD=BD,求出∠ADC=∠ADB=90°,∠CAD=∠FBD,根据ASA证△BDF≌△BDC,根据全等三角形的性质推出DF=DC即可.解答:解:∵AD⊥BC,BE⊥AC,∴∠ADC=∠ADB=∠BEA=90°,∴∠CAD+∠AFE=90°,∠BFD+∠DBF=90°,∵∠AFE=∠DFB,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=∠ABD=45°,∴AD=BD,在△BDF和△BDC中21\n∴△BDF≌△BDC(ASA),∴DF=DC=4,故答案为:4.点评:本题考查了垂直定义,三角形内角和定理,全等三角形的性质和判定,定义三角形的判定的应用,主要考查学生的推理能力. 15.(3分)(2022•静海县一模)如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是 ﹣(a+3) .考点:位似变换;坐标与图形性质.分析:设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似比列式计算即可得解.解答:解:设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3).故答案为:﹣(a+3).点评:本题考查了位似变换,坐标与图形的性质,根据位似比的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键. 16.(3分)(2022•静海县一模)将二次函数y=2(x﹣1)2﹣3的图象沿着y轴向上平移3个单位,那么平移后的二次函数图象的顶点坐标是  (1,0) .考点:二次函数图象与几何变换.专题:压轴题;数形结合.分析:易得原抛物线的顶点坐标,那么让横坐标不变,纵坐标加3可得到平移后的顶点坐标.解答:解:原抛物线的顶点坐标为(1,﹣3),∵将二次函数y=2(x﹣1)2﹣3的图象沿着y轴向上平移3个单位,21\n∴新抛物线的顶点的横坐标为1,纵坐标为﹣3+3=0,故答案为(1,0).点评:考查二次函数的平移问题;用到的知识点为:二次函数的平移,看顶点的平移即可;上下平移只改变顶点的纵坐标,上加下减. 17.(3分)(2022•静海县一模)如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x<ax+4的解为 x< .考点:一次函数与一元一次不等式.分析:把(m,3)代入y=2x即可求得m的值,然后根据函数的图象即可写出不等式的解集.解答:解:把A(m,3)代入y=2x,得:2m=3,解得:m=;根据图象可得:不等式2x<ax+4的解集是:x<.故答案是:x<.点评:本题考查了一次函数与一元一次不等式(组)之间的内在联系.理解一次函数的增减性是解决本题的关键. 18.(3分)(2022•盐城)小明尝试着将矩形纸片ABCD(如图①,AD>CD)沿过A点的直线折叠,使得B点落在AD边上的点F处,折痕为AE(如图②);再沿过D点的直线折叠,使得C点落在DA边上的点N处,E点落在AE边上的点M处,折痕为DG(如图③).如果第二次折叠后,M点正好在∠NDG的平分线上,那么矩形ABCD长与宽的比值为  .考点:翻折变换(折叠问题).专题:压轴题.分析:连DE,由翻折的性质知,四边形ABEF为正方形,∠EAD=45°,而M点正好在∠NDG的平分线上,则DE平分∠GDC,易证RT△DGE≌Rt△DCE,得到DC=DG,而△AGD为等腰直角三角形,得到AD=DG=CD.解答:解:连DE,如图,∵沿过A点的直线折叠,使得B点落在AD边上的点F处,∴四边形ABEF为正方形,21\n∴∠EAD=45°,由第二次折叠知,M点正好在∠NDG的平分线上,∴DE平分∠GDC,∴RT△DGE≌Rt△DCE,∴DC=DG,又∵△AGD为等腰直角三角形,∴AD=DG=CD,∴矩形ABCD长与宽的比值为.故答案为:.点评:本题考查了翻折的性质:翻折前后的两个图形全等.也考查了正方形、角的平分线的性质以及等腰直角三角形的性质. 三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(6分)(2022•静海县一模)解不等式组:.考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集,再求其公共解.解答:解:,由①得,x>﹣1,由②得,x≤4.所以,不等式组的解集为﹣1<x≤4.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 20.(8分)(2022•北京)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象的一个交点为A(﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.21\n考点:反比例函数与一次函数的交点问题.专题:代数综合题;压轴题.分析:(1)把A的坐标代入函数解析式即可求得k的值,即可得到函数解析式;(2)PA=OA,则P在以A为圆心,以OA为半径的圆上或P在以O点为圆心,以OA为半径的圆上,圆与坐标轴的交点就是P.解答:解:(1)∵点A(﹣1,n)在一次函数y=﹣2x的图象上.∴n=﹣2×(﹣1)=2∴点A的坐标为(﹣1,2)∵点A在反比例函数的图象上.∴k=﹣2∴反比例函数的解析式是y=﹣.(2)∵A(﹣1,2),∴OA==,∵点P在坐标轴上,∴当点P在x轴上时设P(x,0),∵PA=OA,∴=,解得x=﹣2;当点P在y轴上时,设P(0,y),∴=,解得y=4;当点P在坐标原点,则P(0,0).∴点P的坐标为(﹣2,0)或(0,4)或(0,0).21\n点评:本题主要考查了待定系数法求反比例函数的解析式,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法. 21.(8分)(2022•静海县一模)某小区20户家庭的日用电量(单位:千瓦时)统计如下:日用电量(单位:千瓦时)4567810户数124652(I)求这20个样本数据的平均数、众数和中位数;(II)根据样本数据,估计该小区200户家庭中日均用电量不超过7千瓦时的约有多少户.考点:用样本估计总体;加权平均数;中位数;众数.分析:(Ⅰ)分别利用平均数、众数及中位数的定义进行解答即可;(Ⅱ)根据20户中月用水量不超过7千瓦时的有13户可以求得200户中有130户用电量超过7千瓦时.解答:解:(I)观察表格.可知这组样本救据的平均数是=7∴这组样本数据的平均数为7.∵在这组样本数据中.7出现了6次,出现的次数最多,∴这组数据的众数为7.∵将这组样本数据按从小到大的顺序排列.其中处于中间的两个数都是7,∴这组数据的中位数为7.(Ⅱ)∵20户中月均用水量不超过7千瓦时的有13户,有=130.∴根据样本数据,可以估计出该小区200户家庭中日均用电量不超过7千瓦时的约有130户.点评:本题考查了平均数、中位数、众数及用样本估计总体的知识,解题的关键是仔细的看表,并从中找到进一步解题的有关信息. 22.(8分)(2022•静海县一模)如图,BE是⊙O的直径,点A在EB的延长线上,弦PD⊥BE,垂足为C,连接OD,∠AOD=∠APC.(I)求证:AP是⊙O的切线;(II)若⊙O半径为4,AP=,求BP的长.21\n考点:切线的判定;圆周角定理;解直角三角形.分析:(I)连接OP,证OP⊥AP即可;可结合已知的等角和等腰三角形、直角三角形的性质进行证明;(II)由(Ⅰ)可知三角形AOP是直角三角形,利用已知数据和特殊角的三角函数即可求出BP的长.解答:(I)证明:连接OP,∵BE是⊙O的直径,PD⊥BE,∠POC=∠DOC,∵∠APD+∠A=90°,∠CPO+∠POA=90°,而∠AOD=∠APC,∴∠POC=∠APD,∴∠A=∠DPO,从而∠DPO+∠APD=90°,即OP⊥AP,∴AP是⊙O的切线;(Ⅱ)解:∵OP⊥AP,∴△AOP是直角三角形,∠APO=90°∵,tan∠A=,∴∠A=30°,∴∠OPC=30°,∴∠POB=60°,∴PB=OP=4.点评:此题主要考查了切线的判定和性质、直角三角形的性质、以及相似特殊角的锐角三角函数等知识,难度适中. 23.(8分)(2022•凉山州)如图所示,城关幼儿园为加强安全管理,决定将园内的滑滑板的倾斜角由45°降为30°,已知原滑滑板AB的长为4米,点D、B、C在同一水平地面上.(1)改善后滑滑板会加长多少米?21\n(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?请说明理由.(参考数据:,,,以上结果均保留到小数点后两位)考点:解直角三角形的应用-坡度坡角问题;勾股定理.分析:(1)滑滑板增加的长度实际是(AD﹣AB)的长.在Rt△ABC中,通过解直角三角形求出AC的长,进而在Rt△ACD中求出AD的长得解;(2)分别在Rt△ABC、Rt△ACD中求出BC、CD的长,即可求出BD的长,进而可求出改造后滑滑板前方的空地长.若此距离大于等于3米则这样改造安全,反之则不安全.解答:解:(1)在Rt△ABC中,AC=AB•sin45°=4×=2.∵∠ABC=45°,∴AC=BC=2.(2分)在Rt△ADC中,AD===4,AD﹣AB=4﹣4≈1.66.(4分)∴改善后滑板会加长1.66米;(2)这样改造能行,理由如下:(5分)∵CD===2≈4.898,(或CD====2)(6分)BD=CD﹣BC=2﹣2≈4.898﹣2.828≈2.07.(7分)∵6﹣2.07≈3.93>3,(8分)∴这样改造能行.21\n点评:此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.当两个直角三角形有公共边时,先求出这条公共边是解答此类题的一般思路. 24.(8分)(2022•静海县一模)某采摘农场计划种植A、B两种草莓共6亩,根据表格信息,解答下列问题:项目品种AB年亩产(单位:千克)12002000采摘价格(单位:元/千克)6040(1)若该农场每年草莓全部被采摘的总收入为460000元,那么A、B两种草莓各种多少亩?(2)若要求种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?考点:一次函数的应用.分析:(1)根据等量关系:总收入=A地的亩数×年亩产量×采摘价格+B地的亩数×年亩产量×采摘价格,列方程求解.(2)这是一道只有一个函数关系式的求最值问题,根据题意确定自变量的取值范围,由函数y随x的变化求出最大利润.解答:解:(1)设该农场种植A种草莓x亩,B种草莓(6﹣x)亩(1分)依题意,得:60×1200x+40×2000(6﹣x)=460000(2分)解得:x=2.5,则6﹣x=3.5(3分)(2)由x≥(6﹣x),解得x≥2设农场每年草莓全部被采摘的收入为y元,则:y=60×1200x+40×2000(6﹣x)=﹣8000x+480000(4分)∴当x=2时,y有最大值为464000(5分)答:(1)A种草莓种植2.5亩,B种草莓种植3.5亩(2)若种植A种草莓的亩数不少于种植B种草莓的一半,那么种植A种草莓2亩时,可使农场每年草莓全部被采摘的总收入最多.点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值. 21\n25.(10分)(2022•盐城)如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为 垂直 ,数量关系为 相等 .②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)(3)若AC=2,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.考点:全等三角形的判定;正方形的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)可通过证明三角形ABC和三角形ACF全等来实现.因为AD=AF,AB=AC,只要证明∠BAD=∠CAF即可,∠BAD=90°﹣∠DAC=∠FAC,这样就构成了全等三角形判定中的SAS,△ABD≌△ACF,因此BC=CF,∠B=∠ACF,因为∠B+∠ACB=90°,那么∠ACF+ACD=90°,即FC⊥BC,也就是FC⊥BD.(2)可通过构建三角形来求解.过点A作AG⊥AC交BC于点G,如果CF⊥BD,那么∠ACF=∠AGD=90°﹣∠ACD,又因为∠GAD=∠CAE=90°﹣∠CAD.AG=AC那么根据AAS可得出△AGD≌△ACF,AG=AC,又因为∠GAC=90°,可得出∠BCA=45°.因此△BAC满足∠BCA=45°时,CF⊥BD.(3)过点A作AQ⊥BC交BC的延长线于点Q,通过构建与线段相关的三角形相似来求解.图中我们可以看出∠ADQ+∠PDC=90°,那么很容易就能得出,∠QAD=∠PDC,那么就能得出直角三角形ADQ∽直角三角形PDC,那么可得出关于CP、CD、AQ、QD的比例关系,因为∠BCA=45°,∠Q=90°,那么AQ=QC=2,如果设CD=x,那么可用x表示出CD、QD,又知道AQ的值和CP、CD、QD、AQ的比例关系,那么可得出关于CP和x的函数关系式,然后根据函数的性质和x的取值范围求出CP的最大值.解答:解:(1)①CF与BD位置关系是垂直,数量关系是相等②当点D在BC的延长线上时①的结论仍成立由正方形ADEF得AD=AF,∠DAF=90度∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC21\n又∵AB=AC,∴△DAB≌△FAC,∴CF=BD∠ACF=∠ABD∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°∴∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠BCA=45°时,CF⊥BD(如图)理由是:过点A作AG⊥AC交BC于点G,∴AC=AG可证:△GAD≌△CAF∴∠ACF=∠AGD=45°∠BCF=∠ACB+∠ACF=90°,即CF⊥BD.(3)当具备∠BCA=45°时,过点A作AQ⊥BC交CB的延长线于点Q,(如图),∵DE与CF交于点P时,此时点D位于线段CQ上,∵∠BCA=45°,AC=2,∴由勾股定理可求得AQ=CQ=2.设CD=x,∴DQ=2﹣x,∵∠ADB+∠ADE+∠PDC=180°且∠ADE=90°,∴∠ADQ+∠PDC=90°,又∵在直角△PCD中,∠PDC+∠DPC=90°∴∠ADQ=∠DPC,∵∠AQD=∠DCP=90°∴△AQD∽△DCP,∴=,∴.∴CP=x2+x=(x﹣1)2+.∵0<x≤,∴当x=1时,CP有最大值.21\n点评:本题中综合考查了正方形的性质,全等三角形的判定以及函数关系式等综合知识.本题的关键是根据题意通过作辅助线来构建出和已知,所求等条件相关的三角形,然后通过相似,全等等知识来求解. 26.(10分)(2022•广州)已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1﹣S2为常数,并求出该常数.考点:二次函数综合题.专题:计算题;压轴题.分析:(1)把C(0,1)代入抛物线即可求出c;(2)把A(1,0)代入得到0=a+b+1,推出b=﹣1﹣a,求出方程ax2+bx+1=0,的b2﹣4ac的值即可;(3)设A(a,0),B(b,0),由根与系数的关系得:a+b=,ab=,求出AB=,把y=1代入抛物线得到方程ax2+(﹣1﹣a)x+1=1,求出方程的解,进一步求出CD过P作MN⊥CD于M,交x轴于N,根据△CPD∽△BPA,得出=,求出PN、PM的长,根据三角形的面积公式即可求出S1﹣S2的值即可.解答:(1)解:把C(0,1)代入抛物线得:1=0+0+c,解得:c=1,答:c的值是1.(2)解:把A(1,0)代入得:0=a+b+1,∴b=﹣1﹣a,即ax2+(﹣1﹣a)x+1=0,b2﹣4ac=(﹣1﹣a)2﹣4a=a2﹣2a+1>0,∴a≠1,答:a的取值范围是a>0,且a≠1;(3)证明:∵ax2+(﹣1﹣a)x+1=0,∴(ax﹣1)(x﹣1)=0,∴B点坐标是(,0)而A点坐标(1,0)21\n所以AB=﹣1=把y=1代入抛物线得:ax2+(﹣1﹣a)x+1=1,解得:x1=0,x2=,∴过P作MN⊥CD于M,交x轴于N,则MN⊥X轴,∵CD∥AB,∴△CPD∽△BPA,∴=,∴=,∴PN=,PM=,∴S1﹣S2=••﹣••=1,即不论a为何值,S1﹣S2的值都是常数.答:这个常数是1.点评:本题主要考查对用待定系数法求一次函数、二次函数的解析式,解二元一次方程组,解一元一次方程,相似三角形的性质和判定,根的判别式,根与系数的关系,二次函数图象上点的坐标特征,二次函数与X轴的交点等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键,此题是一个综合性比较强的题目,题型较好,难度适中.21\n21

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:45:39 页数:21
价格:¥3 大小:289.56 KB
文章作者:U-336598

推荐特供

MORE