首页

江苏省扬州市邗江区2022年中考数学一模试卷(解析版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

2022年江苏省扬州市邗江区中考数学一模试卷一、选择题(本大题共8个小题,每小题3分,共24分)1.(3分)(2022•金昌)计算﹣2﹣1的结果是(  ) A.﹣1B.1C.3D.﹣3考点:有理数的减法.分析:本题是对有理数减法的考查,减去一个数等于加上它的相反数.解答:解:﹣2﹣1=﹣2+(﹣1)=﹣3.故选D.点评:有理数的减法法则:减去一个数等于加上这个数的相反数. 2.(3分)(2022•文山州)下列运算正确的是(  ) A.a2•a3=a5B.(ab)2=ab2C.(a3)2=a9D.a6÷a3=a2考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数幂相乘,积的乘方的性质,幂的乘方的性质,同底数幂的除法的性质,对各选项分析判断后利用排除法求解.解答:解:A、a2•a3=a5,正确;B、错误,应为(ab)2=a2b2;C、错误,应为(a3)2=a6;D、错误,应为a6÷a3=a3.故选A.点评:本题考查了同底数幂相乘法则,同底数幂相乘,底数不变指数相加,幂的乘方法则,幂的乘方底数不变指数相乘. 3.(3分)(2022•邗江区一模)聪聪同学在“百度”搜索引擎中输入“圆”,能搜索到与之相关的结果个数约为100000000,这个数用科学记数法表示为(  ) A.1×107B.1×108C.10×107D.10×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将100000000用科学记数法表示为:1×108.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 4.(3分)(2022•邗江区一模)本学期的五次数学测试中,甲、乙两同学的平均成绩一样,方差分别为1.2、0.5,由此可知(  ) A.甲比乙的成绩稳定B.乙比甲的成绩稳定 C.甲乙两人的成绩一样稳定D.无法确定谁的成绩更稳定考点:方差.专题:常规题型.17\n分析:方差是用来衡量一组数据波动大小的量,故由甲乙的方差可作出判断.解答:解:由于S乙2=0.5<S甲2=1.2,则成绩较稳定的同学是乙.故选B.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 5.(3分)(2022•福州)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是(  ) A.B.C.D.考点:简单几何体的三视图.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:A、球的主视图、左视图、俯视图都是圆形;故本选项正确;B、圆柱的主视图是长方形、左视图是长方形、俯视图是圆形;故本选项错误;C、六棱柱的主视图是长方形、左视图是长方形、俯视图是正六边形;故本选项错误;D、圆锥的主视图是三角形、左视图三角形、俯视图是圆形;故本选项错误;故选A.点评:本题考查了简单几何体的三视图,掌握三视图的定义,是熟练解答这类题目的关键,培养了学生的空间想象能了. 6.(3分)(2022•佛山)下列函数的图象在每一个象限内,y值随x值的增大而增大的是(  ) A.y=﹣x+1B.y=x2﹣1C.D.考点:二次函数的性质;一次函数的性质;反比例函数的性质.分析:一次函数当k大于0时,y值随x值的增大而增大,反比例函数系数k为负时,y值随x值的增大而增大,对于二次函数根据其对称轴判断其在区间上的单调性.解答:解:A、对于一次函数y=﹣x+1,k<0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;B、对于二次函数y=x2﹣1,当x>0时,y值随x值的增大而增大,当x<0时,y值随x值的增大而减小,故本选项错误;C、对于反比例函数,k>0,函数的图象在每一个象限内,y值随x值的增大而减小,故本选项错误;D、对于反比例函数,k<0,函数的图象在每一个象限内,y值随x值的增大而增大,故本选项正确.故选D.点评:本题主要考查二次函数、一次函数和反比例函数的性质,解答本题的关键是熟练掌握各个函数在每个象限内的单调性. 7.(3分)(2022•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为(  )17\n A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:压轴题;网格型.分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解答:解:如图:连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键. 8.(3分)(2022•邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④,以上结论正确的有(  ) A.1个B.2个C.3个D.4个17\n考点:圆的综合题.专题:几何综合题;压轴题.分析:根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;连接ME,根据直角三角形30°角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出MN=r,EN=r,然后求出AN、EF,再根据三角形的面积公式与圆的公式列式整理即可得到④正确.解答:解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;如图,连接ME,则ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°﹣30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则MN=r,EN=r,∴EF=2EN=r,AN=r+r=r,∴S△AEF:S圆=(×r×r):πr2=3:4,故④正确;综上所述,结论正确的是①②③④共4个.故选D.点评:17\n本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质,综合题,但难度不大,仔细分析便不难求解. 二、填空题(本大题共10个小题,每小题3分,共30分)9.(3分)(2022•邗江区一模)|﹣1|的相反数是 ﹣1 .考点:相反数;绝对值.分析:根据绝对值的性质,相反数的定义可得出答案.解答:解:|﹣1|=1,1的相反数是﹣1.故答案为:﹣1.点评:本题考查了绝对值的性质,相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 10.(3分)(2022•邗江区一模)分式有意义的条件是 x≠1 .考点:分式有意义的条件.分析:根据分式有意义的条件可得x﹣1≠0,再解即可.解答:解:由题意得:x﹣1≠0,解得:x≠1,故答案为:x≠1.点评:此题主要考查了分式有意义的条件,关键是掌握分母不等于0,. 11.(3分)(2022•邗江区一模)分解因式:a4﹣a2= a2(a+1)(a﹣1) .考点:提公因式法与公式法的综合运用.分析:先提取公因式a2,再对余下的多项式利用平方差公式继续分解.解答:解:a4﹣a2=a2(a2﹣1)=a2(a+1)(a﹣1).故答案为:a2(a+1)(a﹣1).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12.(3分)(2022•邗江区一模)一组数据:3,﹣1,0,1,3,6的极差是 7 .考点:极差.分析:先找出这组数据的最大值与最小值,再进行相减即可求出答案.解答:解:这组数据的最大值是6,最小值是﹣1,则极差是:6﹣(﹣1)=7;故答案为:7.点评:此题考查了极差,掌握极差的求法是解题的关键,求极差的方法是用一组数据中的最大值减去最小值. 13.(3分)(2022•邗江区一模)已知a﹣b=1,则代数式2a﹣2b﹣3的值是 ﹣1 .考点:代数式求值.专题:计算题.分析:将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.17\n解答:解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.点评:此题考查了代数式求值的知识,属于基础题,解答本题的关键是整体代入思想的运用. 14.(3分)(2022•邗江区一模)已知圆锥的底面半径为3cm,侧面积为15πcm2,则这个圆锥的高为 4 cm.考点:圆锥的计算.专题:计算题.分析:先求出圆锥的底面圆的周长=2π•3=6π,则展开后扇形的弧长为6π,根据扇形的面积公式得到•6π•AB=15π,求出AB=5,然后在Rt△OAB中利用勾股定理即可计算出AO的长.解答:解:如图,∵OB=3cm,∴圆锥的底面圆的周长=2π•3=6π,∵圆锥的侧面积为15πcm2,∴•6π•AB=15π,∴AB=5,在Rt△OAB中,OA===4(cm).故答案为4.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,圆锥的母线长等于扇形的半径,圆锥的底面圆的周长等于扇形的弧长.也考查了弧长公式、扇形的面积公式以及勾股定理. 15.(3分)(2022•永州)如图,在⊙O中,直径CD垂直弦AB于点E,连接OB,CB,已知⊙O的半径为2,AB=,则∠BCD= 30 度.考点:垂径定理;特殊角的三角函数值.专题:计算题;压轴题.17\n分析:首先在直角三角形OEB中利用锐角三角函数求得∠EOB的度数,然后利用同弧所对的圆心角和圆周角之间的关系求得∠BCD的度数即可.解答:解:∵直径CD垂直弦AB于点E,AB=,∴EB=AB=,∵⊙O的半径为2,∴sin∠EOB=,∴∠EOB=60°,∴∠BCD=30°.故答案为30.点评:本题考查了垂径定理及特殊角的三角函数值,解题的关键是利用垂径定理得到直角三角形. 16.(3分)(2022•邗江区一模)秋千拉绳长3米,静止时踩板离地面0.5米,某小朋友荡秋千在最高处踩板离地面2米(左右对称),则该秋千所荡过的圆弧长为 2π 米.考点:弧长的计算.分析:先根据题意画出图,求出弧所对的圆心角,然后再利用弧长公式计算.解答:解:根据题意可知,秋千拉绳和它荡过的圆弧构成扇形,则该扇形的半径OA=3米,弦心距OD=OE﹣DE=3﹣(2﹣0.5)=1.5米.∵cos∠AOD==,∴∠AOD=60°,∴∠AOB=120°,∴该秋千所经过的弧长==2π(米).故答案为:2π.点评:主要考查了弧长公式的实际运用,难度一般,求弧长的关键是要知道圆心角和半径的长度. 17.(3分)(2022•邗江区一模)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x…0123…y…5212…点A(x1,y1)、B(x2,y2)在函数的图象上,则当0<x1<1,2<x2<3时,y1与y2的大小关系是 y1>y2 .考点:二次函数图象上点的坐标特征.专题:计算题;压轴题.分析:由二次函数图象的对称性知,图表可以体现出二次函数y=ax2+bx+c的对称轴和开口方向,然后由二次函数的单调性填空.17\n解答:解:根据图表知,当x=1和x=3时,所对应的y值都是2,∴抛物线的对称轴是直线x=2,又∵当x>2时,y随x的增大而增大;当x<2时,y随x的增大而减小,∴该二次函数的图象的开口方向是向上;∵0<x1<1,2<x2<3,0<x1<1关于对称轴的对称点在3和4之间,当x>2时,y随x的增大而增大,∴y1>y2,故答案是:y1>y2点评:本题主要考查对二次函数图象上点的坐标特征,解二元一次方程组,用待定系数法求二次函数的解析式等知识点的理解和掌握,能根据二次函数的对称性判断两点的纵坐标的大小是解此题的关键. 18.(3分)(2022•邗江区一模)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为 4 .考点:待定系数法求反比例函数解析式;矩形的性质.专题:代数几何综合题;压轴题.分析:先设y=再根据k的几何意义求出k值即可.解答:解:设C的坐标为(m,n),又A(﹣2,﹣2),∴AN=MD=2,AF=2,CE=OM=FD=m,CM=n,∴AD=AF+FD=2+m,AB=BN+NA=2+n,∵∠A=∠OMD=90°,∠MOD=∠ODF,∴△OMD∽△DAB,∴=,即=,整理得:4+2m=2m+mn,即mn=4,则k=4.故答案为4.点评:17\n主要考查了用待定系数法求反比例函数的解析式和反比例函数系数k的几何意义.反比例函数系数k的几何意义为:反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积,本题综合性强,考查知识面广,能较全面考查学生综合应用知识的能力. 三、解答题(共10小题,满分96分)19.(8分)(2022•邗江区一模)(1)计算:(2)解方程组:.考点:二次根式的混合运算;负整数指数幂;解二元一次方程组;特殊角的三角函数值.分析:(1)首先计算乘方,代入特殊角的三角函数值,然后计算乘法,最后合并同类二次根式即可;(2)由①得,y=3﹣x,代入第二个方程即可消去y,得到关于x的方程,求得x的值,然后代入y=3﹣x从而求得y的值.解答:解:(1)原式=﹣+2×=﹣+=;(2),由①得,y=3﹣x③,把③代入②得,2x+3(3﹣x)=7,2x+9﹣3x=7则x=2,把,x=2代入③得y=1.∴原方程组的解为.点评:本题考查特殊角的三角函数值,二次根式的化简,以及二元一次方程组的解法,解方程组的基本思想是消元. 20.(8分)(2022•邗江区一模)已知,求的值.考点:分式的化简求值.专题:计算题.分析:已知等式两边求倒数,变形后求出的值,将已知等式及的值代入计算即可求出值.解答:解:∵=2,∴=,∴=﹣,∴原式=2×2+4×(﹣)=4﹣2=2.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式. 21.(8分)(2022•南京)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O,(1)求证:①△ABC≌△ADC;②OB=OD,AC⊥BD;17\n(2)如果AC=6,BD=4,求筝形ABCD的面积.考点:全等三角形的判定与性质.专题:几何综合题.分析:分别利用SSS,SAS求证△ABC≌△ADC,△ABO≌△ADO,从而得出OB=OD,AC⊥BD,筝形的面积公式可用△ABC的面积与△ACD的面积和求得.解答:(1)证明:①在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.②∵△ABC≌△ADC,∴∠BAO=∠DAO.∵AB=AD,OA=OA,∴△ABO≌△ADO.∴OB=OD,AC⊥BD.(2)解:筝形ABCD的面积=△ABC的面积+△ACD的面积=×AC×BO+×AC×DO,=×AC×(BO+DO),=×AC×BD,=×6×4,=12.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.求出AC⊥BD是正确解决本题的关键. 22.(8分)(2022•邗江区一模)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的.(1)在这段时间中他们抽查的车有 45 辆;17\n(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是 C A.30.5~40.5B.40.5~50.5C.50.5~60.5D.60.5~70.5(3)补全频数分布直方图,并在图中画出频数折线图;(4)如果全天超速(车速大于60千米/时)的车有240辆,则当天的车流量约为多少辆?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布折线图;中位数.分析:(1)用车速在41千米/时到50千米/时的车辆数除以即可得到;(2)根据车辆总数确定第23辆车为中位数,根据每一小组的频数确定中位数所处的小组即可;(3)用总数减去其他小组的频数即可得到50.5~60.5小组的频数即可补全统计图;(4)用240除以车速车速大于60千米/时的车辆所占的百分比即可求得车流量.解答:解:(1)观察统计图知:车速在41千米/时到50千米/时的车辆数为10,占总数的,故10÷=45;(2)∵共45辆车,∴中位数为第23辆车的速度,∴50.5~60.5故选C.(3)(4)240÷=1350(辆)答:当天的车流量约为1350辆.点评:本题考查了频数分布直方图、用样本估计总体、频数分布折线图及中位线的知识,解题的关键是仔细的审题并从直方图中整理出进一步解题的有关信息. 23.(10分)(2022•邗江区一模)一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,点A到地面的距离AD=8cm,旅行箱与水平面AE成50°角,求拉杆把手处C到地面的距离(精确到1cm).(参考数据:sin50°=0.77,cos50°=0.64,tan50°=1.19)17\n考点:解直角三角形的应用.分析:过C作地面的垂线CG,交AE于F,在构造的Rt△ACF中,已知∠CAE的度数及AC的长,可求得CF的值,从而由CG=CF+AD得到CG的长,即C到地面的距离.解答:解:如图;过点C作CG⊥AE于F,交地面于G;由AC=AB+BC=50+35=85cm,FG=AD,即FG=8cm,在Rt△ACF中,∠CAE=50°,∴CF=ACsin50°=85×0.77=65.45cm,∴CG=CF+FG=65.45+8≈73cm.(10分)故C道地面的距离为73厘米.点评:本题重在利用直角三角形中的三角函数关系,根据已知求未知. 24.(10分)(2022•广安)广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?考点:一元二次方程的应用.专题:增长率问题;优选方案问题;压轴题.分析:(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.解答:解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.点评:本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题. 25.(10分)(2022•邗江区一模)在△ABC中,∠C=90°,AC=6cm,BC=8cm,扇形ODF与BC边相切,切点是E,若FO⊥AB于点O.求扇形ODF的半径.17\n考点:切线的性质;相似三角形的判定与性质.专题:计算题.分析:连接OE,设扇形ODF的半径为r,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,再由扇形ODF与BC相切,得到OE垂直于BC,由OF与AB垂直及AC于BC垂直得到两对直角相等,再由一对公共角相等,利用两对对应角相等的两三角形相似可得出三角形AOF与三角形ACB相似,由相似得比例,将AC,BC及设出的半径r代入,表示出AO的长,又AC垂直于BC,可得出OE与AC平行,根据两直线平行同位角相等可得出两对对应角相等,根据两对对应角相等的两三角形相似可得出三角形BOE与三角形ACB相似,根据相似得比例将AB,AC,表示出的OB及OE代入,得到关于r的方程,求出方程的解即可得到半径r的值.解答:解:连接OE,如图所示:设扇形ODF的半径为rcm.在Rt△ACB中,AC=6cm,BC=8cm,∴AB==10cm,…(1分)∵扇形ODF与BC边相切,切点是E,∴OE⊥BC,∵∠AOF=∠ACB=90°,又∠A=∠A,∴△AOF∽△ACB.∴=,即=,解得:AO=r,…(5分)∵OE∥AC,∴∠BOE=∠BAC,∠OEB=∠ACB,∴△BOE∽△BAC,又OB=AB﹣OA=10﹣,∴=,即=,17\n解得:r=.…(8分)点评:此题考查了切线的性质,相似三角形的判定与性质,勾股定理,以及平行线的性质,熟练掌握切线的性质是解本题的关键. 26.(10分)(2022•邗江区一模)爸爸、妈妈和小明一家三人准备在下周六每人骑一辆车出行,家里有三辆车:自行车1、自行车2和电瓶车,小明只能骑自行车,爸爸、妈妈可以骑任意一辆车.(1)请列举出他们出行有哪几种骑车方案;(2)如果下周日三人继续这样每人骑一辆车出行,请用列表或画树状图的方法计算两次出行骑车方案相同的概率.(为了便于描述,骑车方案一、方案二…可以分别用a、b…来表示)考点:列表法与树状图法.专题:图表型.分析:(1)画出树状图,根据图形写出所有的骑车方案即可;(2)画出树状图,然后根据概率公式列式进行计算即可得解.解答:解:(1)根据题意画出树状图如下:共有四种骑车方案:方案一:小明(自行车1)爸爸(自行车2)妈妈(电瓶车),方案二:小明(自行车1)爸爸(电瓶车)妈妈(自行车2),方案三:小明(自行车2)爸爸(自行车1)妈妈(电瓶车),方案四:小明(自行车2)爸爸(电瓶车)妈妈(自行车1);(2)树状图如下:共有16种等可能结果,其中两次出行骑车方案相同有4种,所以,P(两次出行骑车方案相同)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 27.(12分)(2022•邗江区一模)小亮和小刚进行赛跑训练,他们选择了一个土坡,按同一路线同时出发,从坡脚跑到坡顶再原路返回坡脚.他们俩上坡的平均速度不同,下坡的平均速度则是各自上坡平均速度的1.5倍.设两人出发xmin后距出发点的距离为ym.图中折线表示小亮在整个训练中y与x的函数关系,其中A点在x轴上,M点坐标为(2,0).(1)A点所表示的实际意义是 小亮出发分钟回到了出发点 ;=  ;(2)求出AB所在直线的函数关系式;(3)如果小刚上坡平均速度是小亮上坡平均速度的一半,那么两人出发后多长时间第一次相遇?17\n考点:一次函数的应用.分析:(1)根据已知M点的坐标进而得出上坡速度,再利用已知下坡的平均速度则是各自上坡平均速度的1.5倍,得出下坡速度以及下坡所用时间,进而得出A点实际意义和OM,AM的长度,即可得出答案;(2)根据A,B两点坐标进而利用待定系数法求出一次函数解析式即可;(3)根据小刚上坡平均速度是小亮上坡平均速度的一半首先求出小刚的上坡的平均速度,进而利用第一次相遇两人中小刚在上坡,小亮在下坡,即可得出小亮返回时两人速度之和为:120+360=480(m/min),进而求出所用时间即可.解答:解:(1)根据M点的坐标为(2,0),则小亮上坡速度为:=240(m/min),则下坡速度为:240×1.5=360(m/min),故下坡所用时间为:=(分钟),故A点横坐标为:2+=,纵坐标为0,得出实际意义:小亮出发分钟回到了出发点;==.故答案为:小亮出发分钟回到了出发点;.(2)由(1)可得A点坐标为(,0),设y=kx+b,将B(2,480)与A(,0)代入,得:,解得.所以y=﹣360x+1200.(3)小刚上坡的平均速度为240×0.5=120(m/min),小亮的下坡平均速度为240×1.5=360(m/min),由图象得小亮到坡顶时间为2分钟,此时小刚还有480﹣2×120=240m没有跑完,两人第一次相遇时间为2+240÷(120+360)=2.5(min).(或求出小刚的函数关系式y=120x,再与y=﹣360x+1200联立方程组,求出x=2.5也可以.)点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式和利用图象联系实际问题,根据已知得出两人的行驶速度是解题关键. 17\n28.(12分)(2022•东莞)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).考点:二次函数综合题.专题:压轴题.分析:(1)已知抛物线的解析式,当x=0,可确定C点坐标;当y=0时,可确定A、B点的坐标,进而确定AB、OC的长.(2)直线l∥BC,可得出△AED、△ABC相似,它们的面积比等于相似比的平方,由此得到关于s、m的函数关系式;根据题干条件:点E与点A、B不重合,可确定m的取值范围.(3)①首先用m列出△AEC的面积表达式,△AEC、△AED的面积差即为△CDE的面积,由此可得关于S△CDE、m的函数关系式,根据函数的性质可得到S△CDE的最大面积以及此时m的值;②过E做BC的垂线EM,这个垂线段的长即为与BC相切的⊙E的半径,可根据相似三角形△BEF、△BCO得到的相关比例线段求得该半径的值,由此得解.解答:解:(1)已知:抛物线y=x2﹣x﹣9;当x=0时,y=﹣9,则:C(0,﹣9);当y=0时,x2﹣x﹣9=0,得:x1=﹣3,x2=6,则:A(﹣3,0)、B(6,0);∴AB=9,OC=9.(2)∵ED∥BC,∴△AED∽△ABC,∴=()2,即:=()2,得:s=m2(0<m<9).(3)解法一:∵S△ACE=AE•OC=m×9=m,∴S△CDE=S△ACE﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.17\n记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC===3.∵∠OBC=∠MBE,∠COB=∠EMB=90°.∴△BOC∽△BME,∴=,∴=,∴r==.∴所求⊙E的面积为:π()2=π.解法二:∵S△AEC=AE•OC=m×9=m,∴S△CDE=S△AEC﹣S△ADE=m﹣m2=﹣(m﹣)2+.∵0<m<9,∴当m=时,S△CDE取得最大值,最大值为.此时,BE=AB﹣AE=9﹣=.∴S△EBC=S△ABC=.如图2,记⊙E与BC相切于点M,连接EM,则EM⊥BC,设⊙E的半径为r.在Rt△BOC中,BC==.∵S△EBC=BC•EM,∴×r=,∴r==.∴所求⊙E的面积为:π()2=π.点评:该题主要考查了二次函数的性质、相似三角形的性质、图形面积的求法等综合知识.在解题时,要多留意图形之间的关系,有些时候将所求问题进行时候转化可以大大的降低解题的难度.17\n 17

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-08-25 20:25:07 页数:18
价格:¥3 大小:250.55 KB
文章作者:U-336598

推荐特供

MORE