2022中考数学第二部分专题突破专题六圆的综合题课件
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/64
2/64
3/64
4/64
剩余60页未读,查看更多内容需下载
类型一折叠问题专题六圆的综合题目录类型三动态问题类型二旋转问题,折叠问题一折叠问题题型多样,变化灵活,从考查学生空间想象能力与动手操作能力的实践操作题,到直接运用折叠相关性质的说理计算题,发展到基于折叠操作的综合题,甚至是压轴题.考查的着眼点日趋灵活,能力立意的意图日渐明显.这对于识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求.题型讲解,方法点拨折叠操作就是将图形的一部分沿着一条直线翻折180°,使它与另一部分图形在这条直线的同旁重叠,其中“折”是过程,“叠”是结果.折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用.而且在解决这类问题中,运用的知识点比较多,综合性强,如轴对称的性质、全等形的相关知识、勾股定理等,这是培养学生识图能力、灵活运用数学知识解决问题能力的一条非常有效的途径.,解决此类问题需要注意:1.折叠重合部分一定全等,折痕所在的直线就是这两个全等形的对称轴;互相重合的两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连接所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等.2.在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决相关的折叠问题,可以使得解题思路更加清晰,解题步骤更加简洁.3.能够熟练抓住折叠前后的不变量以及折叠问题当中的特殊背景——圆,利用圆的性质解决问题.解题技巧,(2020·省级联考)如图,已知☉O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将劣弧沿着CD翻折后,点A与圆心O重合,延长OA至点P,使AP=OA,连接PC.(1)求CD的长;(2)求证:PC是☉O的切线;(3)点G为的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交于点F(点F与点B,C不重合).问:GE·GF是否为定值?如果是,求出该定值;如果不是,请说明理由.例题1,分析:(1)连接OC,在Rt△COM中,用勾股定理求CM的长度,从而得到CD的长度.(2)在△OCP中,分别计算三边的长度,再根据勾股定理证明△OCP是直角三角形,即可证明PC是☉O的切线.(3)连接GO并延长,交☉O于点H,连接HF,证明△OGE∽△FGH,即可得到GE·GF=OG·GH.解析:(1)如图①,连接OC,∵劣弧沿CD翻折后,点A与圆心O重合,∴OM=OA=×2=1,CD⊥OA.∵OC=2,∴CD=2CM=2=2=2.图①,(2)证明:如图①∵AP=OA=2,AM=OM=1,CM=CD=,∠CMP=∠OMC=90°,∴PM=AP+AM=3.∴PC===2.∵OC=2,PO=PM+OM=3+1=4,∴PC2+OC2=(2)2+22=16=PO2.∴∠PCO=90°,即OC⊥PC.∴PC是☉O的切线.图①,(3)GE·GF是定值.证明如下:如图②,连接GO并延长,交☉O于点H,连接HF.∵点G为的中点,∴∠GOE=90°.∵GH是☉O的直径,∴∠HFG=90°.又∵∠OGE=∠FGH,∴△OGE∽△FGH.∴=.∴GE·GF=OG·GH=2×4=8.【高分点拨】本题是圆的综合题,主要利用了翻折变换的性质、垂径定理、勾股定理、勾股定理的逆定理、圆的切线的判定、相似三角形的判定与性质,难点在于第(3)题中作辅助线构造相似三角形.图②,当堂检测1(2020·石家庄二十七中校级模拟)如图,AB是半圆O的直径,点P(不与点A,B重合)为半圆上一点.将图形沿BP折叠,分别得到点A,O的对称点A',O'.设∠ABP=α.(1)当α=10°时,∠ABA'=°;(2)当点O'落在上时,求出α的度数.解:(1)由翻折变换的性质,得∠ABP=∠A'BP=10°,∴∠ABA'=20°.故答案为20.,(2)如图,连接OO'.∵点O'落在上,∴OO'=OB.∵PB垂直且平分OO',∴BO'=OB.∴△OBO'为等边三角形.∴∠ABA'=60°.∴α=30°.,旋转问题二旋转是几何图形运动中的重要变换,随着课程改革的进一步深入,利用旋转的知识进行有关计算或证明的题目有很多,小到填空、选择题,大到综合、推理题.尤其是题目中没有涉及旋转等文字,使不少学生在解答时无从着手,找不到解题的途径,但如果能根据题目特征加以观察,通过旋转,找到解题的突破口,那么问题就简单化了.题型讲解,方法点拨此类问题主要考查旋转的综合应用,解决这类问题的关键是充分利用图形绕点旋转只改变图形的位置而不改变图形的形状、大小,各对应点到旋转中心的距离等性质.利用这些性质可以求出相关线段的长度、图形的面积等.利用旋转的不变性还可以列出方程或函数解析式等,帮助解决问题.解决此类问题一般需要注意:1.要理解旋转变换的作用,旋转改变图形的位置但不改变图形的形状、大小.2.当图形过于分散或集中,无法有效利用时,需要移动图形,而移动图形的手段就是三种变换.当图形中存在共顶点的等线段时就可以实施旋转变换.3.确定旋转中心、旋转方向、旋转角度.解题技巧,(2020·保定高阳一模)如图,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为点A,半圆绕点M顺时针转动,转过的角度记作α.设半圆O的半径为R,AM的长度为m,回答下列问题:探究:(1)若R=2,m=1,如图①,当旋转30°时,圆心O'到射线AB的距离是;如图②,当α=°时,半圆O与射线AB相切;例题2图①图②,(2)如图③,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由;发现:(3)如图④,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R,m两个量的关系,请你帮助他直接写出这个关系:cosα=(用含有R,m的代数式表示);拓展:(4)如图⑤,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示).图③图④图⑤,分析:(1)①过点O'作O'E⊥AB于点E,过点M作MF⊥O'E于点F,在Rt△MFO'中,用勾股定理求O'F的长度,从而得到O'E的长度;②连接O'F,作O'E⊥OA于点E,在Rt△O'EM中,利用余弦值即可求得α的度数;(2)构造Rt△O'QM,利用余弦值求O'Q,根据O'Q+QP=O'P,建立方程求R的大小;(3)构造Rt△O'QM,利用余弦函数求得cosα;(4)当半圆与射线AB相切时,开始出现交点,当N'落在AB上时,是半圆与AB有两个交点的最后时刻,分析出这两种情况,即可求得α的取值范围;当N'落在AB上时,可求出阴影部分的最大面积.,解析:(1)如图⑥中,过点O'作O'E⊥AB于点E,过点M作MF⊥O'E于点F,则四边形AMFE是矩形.∴EF=AM=1.在Rt△MFO'中,∵∠MO'F=α=30°,O'M=R=2,∴O'F=O'M·cos30°=.∴O'E=+1.∴点O'到AB的距离为+1.如图⑦中,设切点为F,连接O'F,作O'E⊥OA于点E,则四边形O'EAF是矩形.∴AE=O'F=R=2.∵AM=1,∴EM=AE-AM=1.在Rt△O'EM中,cosα==,∴α=60°.故答案为+1,60.图⑥图⑦,(2)如图⑧,设切点为P,连接O'P,过点M作MQ⊥O'P于点Q,则四边形APQM是矩形,∴QP=AM=1.∵O'P=R,在Rt△O'QM中,∠QO'M=α=30°,∴O'Q=O'M·cos30°=R.∵O'P=O'Q+QP,∴R=R+1.∴R=4+2.图⑧(3)如图⑨,设切点为P,连接O'P,过点M作MQ⊥O'P于点Q,则四边形APQM是矩形.在Rt△O'QM中,O'Q=R·cosα.QP=AM=m.∵O'P=R,∴R·cosα+m=R.∴cosα=.故答案为.图⑨,(4)当半圆与射线AB相切时,开始出现交点,此时α=90°;当N'落在AB上时,为半圆弧线与射线AB有两个交点的最后时刻,此时MN'=2AM,∴∠AMN'=60°.∴α=120°.∴当半圆弧线与射线AB有两个交点时,α的取值范围是90°<α≤120°.故答案为90°<α≤120°.当N'落在AB上时,阴影部分的面积最大,最大值为-×m×m=-m2.【高分点拨】本题是圆的综合题,主要考查了旋转变换、切线的判定和性质、解直角三角形等知识,解题的关键是理解旋转变换的作用,旋转可以改变图形的位置而不改变图形的形状、大小.学会添加常用辅助线,构造直角三角形或特殊四边形解决问题.,当堂检测2(2020·石家庄模拟)如图①,是用量角器测量一个角的操作示意图,量角器的读数从点M开始(即点M的读数为0).如图②,把这个量角器与一块30°(∠CAB=30°)角的三角板拼在一起,三角板的斜边AB与量角器所在圆的直径MN重合.现在射线CP绕点C从CA开始沿顺时针方向以每秒2°的速度旋转到CB,在旋转过程中,射线CP与量角器的半圆弧交于点E.连接BE.,当堂检测2(1)当射线CP经过AB的中点时,点E处的读数是,此时△BCE的形状是.(2)设旋转x秒后,点E处的读数为y,求y与x的函数关系式.(3)当CP旋转多少秒时,△BCE是等腰三角形?图①图②,解:(1)如图①,设AB的中点为O,∵∠ACB=90°,OA=OB,∴OA=OB=OC.∴∠OCA=∠OAC=30°.∴∠AOE=60°.∴点E处的读数是60°.∵OE=OB,∠E=∠BAC=30°,∴∠OBE=∠E=30°.∴∠EBC=∠OBE+∠ABC=90°.∴△BCE是直角三角形.故答案为60°,直角三角形.图①(2)如图②中,设MN的中点为O,∵AB与MN重合,∴点C在以点O为圆心,MN为直径的圆上.由题意,得∠ACE=(2x)°,∠AOE=y.根据同弧所对的圆周角是圆心角的一半,得∠AOE=2∠ACE,∴y=(4x)°(0≤x≤45).图②,(3)易知BC不可能等于CE.①如图③,当BE=CE时,∠ECB=∠EBC.∵∠ACE=(2x)°,∠ACB=90°,∴∠ABE=(2x)°,∠EBC=60°+(2x)°,∠ECB=90°-(2x)°.∴60°+(2x)°=90°-(2x)°,∴x=7.5.②如图④,当BE=BC时,∠BEC=∠BCE,∵∠ACE=(2x)°,∴∠ABE=(2x)°,∠BCE=90°-(2x)°.∴∠CBE=60°+(2x)°.在△BCE中,∠CBE+∠BCE+∠BEC=180°,∴60°+(2x)°+90°-(2x)°+90°-(2x)°=180°.∴x=30.综上所述,当CP旋转7.5秒或30秒时,△BCE是等腰三角形.图③图④,动态问题三以圆为背景的动态问题能有效地考查学生的基本知识、基本技能、基本数学思想以及基本活动经验,常常被列为中考的压轴问题.这类问题属于运动型问题,常在圆上设计一个或几个动点,并对这些点在运动变化的过程中伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究考查.问题常常集几何、代数知识于一体,有较强的综合性.题型讲解,方法点拨解答此类问题需要注意:1.把握点运动的全过程,要注意用运动与变化的眼光去观察和研究图形,抓住其中的等量关系和变量关系,建立方程或函数.2.特别关注一些不变的量、不变的关系或特殊关系,化动为静,由特殊情形(特殊点、特殊位置、特殊图形等)过渡到一般情形.,解决动态问题一般遵循这样的方法:1.找临界点,分类讨论,要抓住图形在动态变化中暂时静止的某一瞬间,将这些点锁定在某一位置上,问题的实质就容易显现出来,从而得到解题的方法.2.当一个问题是有关确定图形的变量之间的关系时,通常建立函数模型求解;当确定图形之间的特殊位置关系或者一些特殊值时,通常建立方程模型求解.一般会涉及全等和相似.解题技巧,(2019·唐山路北模拟)如图,在正方形ABCD中,AB=12,以AB为直径作半圆O,点P从点A出发,沿AD方向以每秒1个单位的速度向点D运动,点Q从点C出发,沿CB方向以每秒3个单位的速度向点B运动,两点同时开始运动,当一点到达终点后,另一点也随之停止运动.设运动时间为t(s).例题3(1)设点M为半圆O上任意一点,则DM的最大值为,最小值为.(2)设PQ交半圆O于点F和点G(点F在点G的上方),当PQ∥AB时,求的长度.(3)在运动过程中,PQ和半圆O能否相切?若相切,请求出此时t的值,若不能相切,请说明理由.(4)点N是半圆O上一点,且S扇形BON=6π,当运动t(s)时,PQ与半圆O的交点恰好为点N,求此时t的值.,分析:(1)构造直角三角形,利用勾股定理求解.(2)构造Rt△OFE,利用正弦函数求出∠OFE的度数,进而可求得∠FOG的度数,从而求得的长度.(3)假设PQ与半圆O相切,利用切线长定理,用t表示出PQ与QH的长度,利用勾股定理,在Rt△PHQ中,PH2+QH2=PQ2,得到t2-4t+12=0,利用Δ=b2-4ac判断方程无解,即可说明PQ与半圆O不能相切.(4)过点N作IJ⊥BC,交BC于点J,交AD于点I,过点N作NT⊥AB于点T.一点到达终点后,另一点也随之停止运动,求出t的取值范围,由S扇形BON=6π,求出∠BON的度数,从而求出相关线段的长度,再根据AD∥BC,得到=这一等量关系,求得t的值,判断t是否在t的取值范围内,即可求解.,解析:(1)如图①,连接OD交半圆O于点M,此时DM最小,在Rt△ADO中,AD=AB=12,OA=AB=6,∴OD==6.∴DM=OD-OM=OD-OA=6-6.当点M和点B重合时,连接BD,此时DM最大,DM=BD=AD=12.故答案为12,6-6.图①,(2)∵四边形ABCD是正方形,∴AD∥BC,∠BAD=∠ABC=90°.∴当PQ∥AB时,四边形ABQP是矩形.∴AP=BQ.∵CQ=3t,∴BQ=12-3t.又∵AP=t,∴t=12-3t,解得t=3.∴AP=3.如图②,设PQ交半圆于点F,G,过点O作OE⊥PQ于点E,连接OF,OG,OF=OG=OA=6,则OE=AP=3.∵sin∠OFE==,∴∠OFE=30°.∴∠OGF=∠OFE=30°,∠FOG=120°.∵OF=OG=6,∴的长度==4π.图②,(3)不能相切.理由如下:若PQ与半圆O相切,设切点为点S,如图③,由切线长定理,得AP=PS,BQ=QS,∴PQ=AP+BQ=t+12-3t=12-2t.过点P作PH⊥BC于点H,则四边形APHB是矩形,∴AP=BH.∴QH=BQ-BH=12-3t-t=12-4t.在Rt△PHQ中,PH2+QH2=PQ2,∴122+(12-4t)2=(12-2t)2,即t2-4t+12=0.∵b2-4ac=16-4×12=-32<0,∴此方程无解.∴在运动过程中,PQ和半圆O不能相切.图③,(4)∵点Q是以每秒3个单位的速度向点B运动,BC=12,∴0≤3t≤12,即0≤t≤4.如图④,过点N作IJ⊥BC,交BC于点J,交AD于点I,过点N作NT⊥AB于点T,则四边形ATNI和四边形BTNJ都是矩形,图④∵S扇形BON==6π,∴∠BON=60°.∴∠ONT=30°.∴在Rt△ONT中,OT=ON=3.∴NT=3.当点P运动到点I时,AI=NT=3,∴t=3>4,不符合题意.∴AP始终小于AI.∴AI=BJ=NT=3,NI=AT=AO+OT=9,NJ=BT=OB-OT=3.∵CQ=3t,AP=t,∴PI=AI-AP=3-t,QJ=BC-CQ-BJ=12-3t-3.∵AD∥BC,∴△NIP∽△NJQ,∴=.∴=,解得t=.∵0<<4,∴当运动s时,PQ与半圆O的交点恰好为点N.,(2020·石家庄新华区一模)如图①,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动.(1)当点B与点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当点B和点E重合时,AC与半圆相切于点F,连接EF,如图②所示.①求证:EF平分∠AEC;②求EF的长.当堂检测3图①图②【高分点拨】本题是圆的综合题,要抓住图形在动态变化中暂时静止的某一瞬间,将这些点锁定在某一位置上,从而得到解题的方法.,解:(1)∵当点B与点O重合的时候,BO=OD+BD=4(cm),∴t==2(s).∴三角板运动的时间为2s.(2)①证明:如图,连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴CE⊥AC.∴OF∥CE,∴∠OFE=∠CEF.∵OF=OE,∴∠OFE=∠OEF.∴∠OEF=∠CEF,即EF平分∠AEC.②由①知,OF⊥AC,∴△AFO是直角三角形.∵∠BAC=30°,OF=OD=3cm,由tan30°==得AF=3cm.由①知,EF平分∠AEC,∴∠AEF=∠CEF=∠AEC=30°.∴∠AEF=∠EAF.∴△AFE是等腰三角形,且AF=EF.∴EF=3cm.,专题六高效测评1.(2020·宁波一模)如图,☉O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与☉O相切于点C,则OC=()A.1B.2C.3D.4,答案:B解析:在Rt△ABO中,sin∠OAB===,∴∠OAB=60°.∵直线l1绕点A逆时针旋转30°后得到的直线l2刚好与☉O相切于点C,∴∠CAB=30°,OC⊥AC.∴∠OAC=60°-30°=30°.在Rt△OAC中,OC=OA=2.故选B.,2.(2020·石家庄模拟)将一个量角器和一个含30°角的直角三角板如图①放置,图②是由它抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.(1)求证:DB∥CF;(2)当OD=2时,若以点O,B,F为顶点的三角形与△ABC相似,求弧的长度.图①图②,解:(1)证明:∵AB是半圆的切线,∴OF⊥AB.∵∠ABC=90°,即BC⊥AB,∴OF∥BC.∵BC=OD,OF=OD,∴OF=BC.∴四边形OFCB是平行四边形.∴OB∥CF,即DB∥CF.(2)∵△ABC和△OFB相似,∴分为两种情况:①当∠FOB=∠A=30°时,△FOB∽△BAC,此时弧的长度是=;②当∠FOB=∠ACB=60°时,△FOB∽△BCA,此时弧的长度是=.因此弧的长度是或.,3.(2020·石家庄藁城区一模)如图①,点O和矩形CDEF的边CD都在直线l上,以点O为圆心,以24为半径作半圆,分别交直线l于A,B两点.已知CD=18,CF=24,矩形自右向左在直线l上平移,当点D到达点A时,矩形停止运动.在平移过程中,设矩形对角线DF与半圆的交点为P(点P为半圆上远离点B的交点).图①图②图③,(1)如图②,若FD与半圆相切,求OD的值;(2)如图③,当DF与半圆有两个交点时,求线段PD的取值范围;(3)若线段PD的长为20,直接写出此时OD的值.(1)如图①,连接OP,∵DF与半圆相切,∴OP⊥FD.∴∠OPD=90°.在矩形CDEF中,∠FCD=90°,∵CD=18,CF=24,∴FD==30.∵∠OPD=∠FCD=90°,∠ODP=∠FDC,PO=CF=24,∴△OPD≌△FCD(AAS).∴OD=FD=30.图①,(2)如图②,当点B,D重合时,过点O作OH⊥DF于点H,则DP=2HD,∵cos∠ODP==,而CD=18,OD=24,由(1)知FD=30,∴=,∴HD=.∴DP=2HD=.当DF与半圆相切时,由(1)知PD=CD=18.∴18<pd≤.图②,(3)设半圆与矩形对角线交于点p,h,过点o作og⊥df,如图③,则pg=gh,tan∠fdc===,cos∠fdc===.设pg=gh=m,则og=,dg=20-m,在rt△ogd中,tan∠fdc===,整理,得25m2-640m+1216=0,解得m=.od===12±8.∵od>O,∴OD=12+8.图③,4.(2020·廊坊大城县一模)如图,正方形ABCD的边长为8,M是AB的中点,P是边BC上的动点,连接PM,以点P为圆心,PM长为半径作☉P.(1)当BP=时,△MBP∽△DCP;(2)当☉P与正方形ABCD的边相切时,求BP的长;(3)设☉P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.,(2)如图①,当☉P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2.∴x=5.∴PC=PM=5.∴BP=BC-PC=8-5=3.如图②,当☉P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM.∴BM=4,PM=8.在Rt△PBM中,PB==4.综上所述,BP的长为3或4.图①图②解:(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4.∵△MBP∽△DCP,∴=,即=.解得a=.故答案为.,(3)由(2)知,当PM=5时,☉P经过点M、点C,此时点B在圆内;如图③,当☉P经过点M、点D时,PM=PD,即PC2+DC2=BM2+PB2.∴(8-PB)2+82=42+PB2.∴PB=7.∴PM==.综上,5</pd≤.图②,(3)设半圆与矩形对角线交于点p,h,过点o作og⊥df,如图③,则pg=gh,tan∠fdc===,cos∠fdc===.设pg=gh=m,则og=,dg=20-m,在rt△ogd中,tan∠fdc===,整理,得25m2-640m+1216=0,解得m=.od===12±8.∵od>
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)