首页

2023版新高考数学一轮总复习第8章第2讲两条直线的位置关系课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/66

2/66

3/66

4/66

剩余62页未读,查看更多内容需下载

第八章解析几何\n第二讲 两条直线的位置关系\n知识梳理·双基自测考点突破·互动探究名师讲坛·素养提升\n知识梳理·双基自测\n知识点一 两条直线的位置关系平面内两条直线的位置关系包括____________________三种情况.(1)两条直线平行对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1∥l2⇔k1=k2,且b1≠b2.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1∥l2⇔A1B2-A2B1=0,且B1C2-B2C1≠0(或A1C2-A2C1≠0).平行、相交、重合\n(2)两条直线垂直对于直线l1:y=k1x+b1,l2:y=k2x+b2,l1⊥l2⇔k1·k2=-1.对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,l1⊥l2⇔________________.知识点二 两条直线的交点对于直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0当A1B2-A2B1≠0时,l1与l2相交.A1A2+B1B2=0\n唯一解无解无数个解\n\n1.求解距离问题的规律运用点到直线的距离公式时,需把直线方程化为一般式;运用两平行线间的距离公式时,需先把两平行线方程中x,y的系数化为相同的形式.\n2.对称问题的求解规律(1)中心对称:转化为中点问题处理.(2)轴对称:转化为垂直平分线问题处理.特殊地:点P(a,b)关于直线x+y+m=0对称的点坐标为(-b-m,-a-m),点P(a,b)关于直线x-y+m=0对称的点坐标为(b-m,a+m).\n×√√\n×√\n题组二 走进教材2.(选择性必修1P67T8(1))过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=0A\nC\nB\n\n5.(2018·全国)坐标原点关于直线x-y-6=0的对称点的坐标为____________.(6,-6)\n考点突破·互动探究\n(1)(2021·江西宜春高安期中)经过抛物线y2=2x的焦点且平行于直线3x-2y+5=0的直线l的方程是()A.6x-4y-3=0B.3x-2y-3=0C.2x+3y-2=0D.2x+3y-1=0(2)“m=3”是“直线l1:2(m+1)x+(m-3)y+7-5m=0与直线l2:(m-3)x+2y-5=0垂直”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件例1A考点一两条直线平行、垂直的关系——自主练透A\n(3)(2022·山东青岛调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=()A.2B.-3C.2或-3D.-2或-3(4)等腰直角三角形斜边的中点是M(4,2),一条直角边所在直线的方程为y=2x,则另外两边所在直线的方程为__________________________.Cx-3y+2=0、x+2y-14=0\n\n\n(1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.\n1B\n\n例2考点二两直线的交点、距离问题——师生共研\n(3)已知点P(2,-1).①求过点P且与原点的距离为2的直线l的方程;②求过点P且与原点的距离最大的直线l的方程,最大距离是多少?③是否存在过点P且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.(4)(2020·上海)已知直线l1:x+ay=1,l2:ax+y=1,若l1∥l2,则l1与l2的距离为______.\n\n\n\n\n距离的求法(1)点到直线的距离:可直接利用点到直线的距离公式来求,但要注意此时直线方程必须为一般式.(2)两平行直线间的距离:①利用“化归”法将两条平行线间的距离转化为一条直线上任意一点到另一条直线的距离;②利用两平行线间的距离公式.\n提醒:在应用两条平行线间的距离公式时,应把直线方程化为一般形式,且使x、y的系数分别相等.\nC\nC\nC\n\n\n角度1线关于点的对称(2022·河北五校联考)直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为()A.2x+3y-12=0B.2x-3y-12=0C.2x-3y+12=0D.2x+3y+12=0例3D考点三对称问题——多维探究\n\n角度2点关于线的对称(2021·湖南长沙一模)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为_______________.例46x-y-6=0\n\n\n[引申]本例中入射光线所在直线的方程为_______________.x-6y+27=0\n角度3线关于线的对称(2022·合肥模拟)已知直线l:x-y-1=0,l1:2x-y-2=0.若直线l2与l1关于l对称,则l2的方程是()A.x-2y+1=0B.x-2y-1=0C.x+y-1=0D.x+2y-1=0例4B\n\n\n\n\n〔变式训练3〕已知直线l:2x-3y+1=0,点A(-1,-2).求:(1)(角度2)点A关于直线l的对称点A′的坐标;(2)(角度3)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;(3)(角度1)直线l关于点A(-1,-2)对称的直线l′的方程.\n\n\n\n(3)设P(x,y)在l′上任意一点,则P(x,y)关于点A(-1,-2)的对称点为P′(-2-x,-4-y),∵点P′在直线l上,∴2(-2-x)-3(-4-y)+1=0,即2x-3y-9=0.\n名师讲坛·素养提升\n巧用直线系求直线方程(1)求证:动直线(m2+2m+3)x+(1+m-m2)y+3m2+1=0(其中m∈R)恒过定点,并求出定点坐标;(2)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程.例6[解析](1)证明:解法一:令m=0,则直线方程为3x+y+1=0.再令m=1时,直线方程为6x+y+4=0.\n\n\n\n解法三:设直线l的方程为x-2y+4+λ(x+y-2)=0,即(1+λ)x+(λ-2)y+4-2λ=0.又∵l⊥l3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l的方程为4x+3y-6=0.[引申]若将本例(2)中的“垂直”改成“平行”,则直线l的方程为_______________.3x-4y+8=0\n1.确定方程含参数的直线所过定点的方法:(1)将直线方程写成点斜式y-y0=f(λ)(x-x0),从而确定定点(x0,y0).(2)将直线方程整理成关于参数的方程,由方程中各项系数及常数项为0确定定点.(3)给参数取两个不同值,再解直线方程构成的方程组,从而确定定点坐标.\n2.直线系的主要应用(1)共点直线系方程:经过两直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0交点的直线系方程为A1x+B1y+C1+λ(A2x+B2y+C2)=0,其中A1B2-A2B1≠0,待定系数λ∈R.在这个方程中,无论λ取什么实数,都得不到A2x+B2y+C2=0,因此它不能表示直线l2.(2)过定点(x0,y0)的直线系方程为y-y0=k(x-x0)(k为参数)及x=x0.\n(3)平行直线系方程:与直线y=kx+b平行的直线系方程为y=kx+m(m为参数且m≠b);与直线Ax+By+C=0平行的直线系方程是Ax+By+λ=0(λ≠C,λ是参数).(4)垂直直线系方程:与直线Ax+By+C=0(A≠0,B≠0)垂直的直线系方程是Bx-Ay+λ=0(λ为参数).如果在求直线方程的问题中,有一个已知条件,另一个条件待定时,那么可选用直线系方程来求解.\nD5x-12y+32=0或5x-12y-20=0\n\n

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-24 16:00:05 页数:66
价格:¥3 大小:1.32 MB
文章作者:随遇而安

推荐特供

MORE