首页

2023版新高考数学一轮总复习第7章第3讲空间直线平面的平行课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/60

2/60

3/60

4/60

剩余56页未读,查看更多内容需下载

第七章立体几何\n第三讲 空间直线、平面的平行\n知识梳理·双基自测考点突破·互动探究名师讲坛·素养提升\n知识梳理·双基自测\na∥ba∥αα∩β=ba∥b\nα∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=b\n1.垂直于同一条直线的两个平面平行,即“若a⊥α,a⊥β,则α∥β”.2.垂直于同一个平面的两条直线平行,即“若a⊥α,b⊥α,则a∥b”.3.平行于同一个平面的两个平面平行,即“若α∥β,β∥γ,则α∥γ”.\n题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.()(2)平行于同一条直线的两个平面平行.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()×××\n(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.()(5)若直线a与平面α内无数条直线平行,则a∥α.()(6)若α∥β,直线a∥α,则a∥β.()√××\n题组二 走进教材2.(必修2P142T2)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是()A.α内有无数条直线都与β平行B.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥αD\n[解析]对于选项A,若存在无数条直线与β平行,则α∥β或α与β相交,若α∥β,则存在一条直线a,使得a∥α,a∥β,所以选项A的内容是α∥β的一个必要条件;同理,选项B,C的内容也是α∥β的一个必要条件而不是充分条件;对于选项D,可以通过平移把两条异面直线平移到—个平面中,成为相交直线,则有α∥β,所以选项D的内容是α∥β的一个充分条件.故选D.\n题组三 走向高考3.(2019·课标全国Ⅱ)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面B\n4.(2017·课标全国Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A\n[解析]B选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;C选项中,AB∥MQ,且AB⊄平面MNQ,MQ⊂平面MNQ,则AB∥平面MNQ;D选项中,AB∥NQ,且AB⊄平面MNQ,NQ⊂平面MNQ,则AB∥平面MNQ.故选A.\n5.(2017·天津,节选)如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.求证:MN∥平面BDE.\n[证明]解法一:连PN交BE于H,连HD.\n\n\n\n考点突破·互动探究\n(1)(多选题)(2022·河南名校联盟质检改编)设有不同的直线a,b和不同的平面α,β,给出下列四个命题中,其中正确的是()A.若a∥α,b∥α,则a∥bB.若a∥α,a∥β,则α∥βC.若a⊥α,b⊥α,则a∥bD.若a⊥α,a⊥β,则α∥β例1CD考点一空间平行关系的基本问题——自主练透\nl⊄α\n\n〔变式训练1〕(多选题)(2022·吉林省吉林市调研改编)如图,正方体ABCD-A1B1C1D1中,E,F,G,H分别为所在棱的中点,则下列各直线、平面中,与平面ACD1平行的是()A.直线EFB.直线GHC.平面EHFD.平面A1BC1ABD\n\n例2考点二直线与平面平行的判定与性质——多维探究\n\n证法二(构造中位线):延长DA、CB相交于H,连PH,\n\n\n判断或证明线面平行的常用方法(1)利用线面平行的定义(无公共点).(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β).(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(5)向量法:证明直线的方向向量与平面的法向量垂直.注:线面平行的关键是线线平行,证明中常构造三角形中位线或平行四边形.MINGSHIDIANBO\n角度2线面平行的性质如图所示,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和PA作平面PAHG交平面BMD于GH.例3求证:PA∥GH.\n[解析]证明:如图所示,连接AC交BD于点O,连接MO,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥MO.又MO⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD.∵平面PAHG∩平面BMD=GH,PA⊂平面PAHG,∴PA∥GH.\n空间中证明两条直线平行的常用方法(1)利用线面平行的性质定理,即a∥α,a⊂β,α∩β=b⇒a∥b.已知l∥α,一般找或作过l且与α相交的平面探求解题方向.(2)利用平行公理:平行于同一直线的两条直线互相平行.(3)利用垂直于同一平面的两条直线互相平行.MINGSHIDIANBO\n〔变式训练2〕(1)(角度1)(2022·广东佛山质检,节选)如图,四棱锥P-ABCD的底面ABCD是平行四边形,E、F分别为AD、PC的中点.\nC\n\n\n解法二:取BC的中点H,连FH,HE,∵F为PC的中点,∴FH∥BP,又FH⊄平面PAB,∴FH∥平面PAB,又E为AD的中点,且四边形ABCD为平行四边形,∴HE∥BA,又HE⊄平面PAB,∴HE∥平面DAB,又FH∩EH=H,∴平面EFH∥平面PAB,∴EF∥平面PAB.\n解法三:连CE并延长交BA的延长线于H,连PH.∵E为平行四边形ABCD的边AD的中点,∴△CDE≌△HAE,∴CE=EH,又F为PC的中点,∴EF∥PH,又EF⊄平面PAB,PH⊂平面PAB,∴EF∥平面PAB.\n\n(2021·山东泰安市月考节选)如图,四棱锥P-ABCD,底面ABCD为直角梯形,∠BAD=90°,CD∥AB,CD=3AB=3AD=3,△PAD为正三角形,E,F,G分别在线段BC,CD,AP上,DF=2FC,BE=2EC,PG=2GA.例4考点三两个平面平行的判定与性质——师生共研\n证明:平面GBD∥平面PEF.\n\n\n\n证明面面平行的方法有(1)面面平行的定义.(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(3)利用“垂直于同一条直线的两个平面平行”.(4)如果两个平面同时平行于第三个平面,那么这两个平面平行.MINGSHIDIANBO\n\n〔变式训练3〕(2022·南昌模拟节选)如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD.设M,N分别为PD,AD的中点.\n求证:平面CMN∥平面PAB.[证明]∵M,N分别为PD,AD的中点,∴MN∥PA,又MN⊄平面PAB,PA⊂平面PAB,∴MN∥平面PAB.在Rt△ACD中,∠CAD=60°,CN=AN,∴∠ACN=60°.又∠BAC=60°,∴CN∥AB.∵CN⊄平面PAB,AB⊂平面PAB,∴CN∥平面PAB.又CN∩MN=N,CN,MN⊂平面CMN,∴平面CMN∥平面PAB.\n名师讲坛·素养提升\n探索性问题求解策略(2022·安徽皖北联考)如图,在四棱锥C-ABED中,四边形ABED是正方形,点G,F分别是线段EC,BD的中点.例5(1)求证:GF∥平面ABC;(2)线段BC上是否存在一点H,使得平面GFH∥平面ACD?若存在,请找出点H并证明;若不存在,请说明理由.\n[解析](1)∵四边形ABED为正方形,F为BD的中点,∴E、F、A共线,连AE,又G为EC的中点,∴GF∥AC,又GF⊄平面ABC,AC⊂平面ABC,∴GF∥平面ABC.\n注:本题也可取BE的中点Q,连GQ、FQ,通过证平面GFQ∥平面ABC来证;或取BC的中点M,AB的中点N,连GM、MN、NF,通过证四边形GMNF为平行四边形得GF∥MN来证.(2)当H为BC的中点时,平面GFH∥平面ACD.证明如下:∵G、H分别为EC、BC的中点,∴GH∥BE,又BE∥AD,∴GH∥AD,又GH⊄平面ACD,AD⊂平面ACD,\n∴GH∥平面ACD,又GF∥AC,GF⊄平面ACD,AC⊂平面ACD,∴GF∥平面ACD,又GF∩GH=G,GF⊂平面GFH,GH⊂平面GFH,∴平面GFH∥平面ACD.[引申]ED上是否存在一点Q,使平面GFQ∥平面ACD.[解析]当Q为ED的中点时,平面GFQ∥平面ACD.\n平行中的探索性问题(1)对命题条件的探索常采用以下三种方法:①先猜后证,即先观察与尝试给出条件再证明;②先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性;③把几何问题转化为代数问题,探索命题成立的条件.MINGSHIDIANBO\n(2)对命题结论的探索常采用以下方法:首先假设结论存在,然后在这个假设下进行推理论证,如果通过推理得到了合乎情理的结论,就肯定假设,如果得到了矛盾的结论,就否定假设.\n〔变式训练4〕(2022·湖南模拟)在长方体ABCD-A1B1C1D1中,已知AB=AD,E为AD的中点.在线段B1C1上是否存在点F,使得平面A1AF∥平面ECC1?若存在,请加以证明,若不存在,请说明理由\n[解析]存在,当点F为线段B1C1的中点时,平面A1AF∥平面ECC1.证明:在长方体ABCD-A1B1C1D1中,AA1∥CC1.又因为CC1⊂平面ECC1,AA1⊄平面ECC1,所以AA1∥平面ECC1.又E为AD的中点,F为B1C1的中点,AD∥B1C1,\n所以AE∥FC1,且AE=FC1.故四边形AEC1F为平行四边形,所以AF∥EC1,又因为EC1⊂平面ECC1,AF⊄平面ECC1,所以AF∥平面ECC1.又因为AF∩AA1=A,AA1⊂平面A1AF,AF⊂平面A1AF,所以平面A1AF∥平面ECC1.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-24 16:00:05 页数:60
价格:¥3 大小:2.07 MB
文章作者:随遇而安

推荐特供

MORE