首页

2022年高考数学一轮复习第八章立体几何2空间几何体的表面积与体积课件(新人教A版理)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/32

2/32

3/32

4/32

剩余28页未读,查看更多内容需下载

8.2空间几何体的表面积与体积\n-2-知识梳理双基自测23411.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是,表面积是侧面积与底面面积之和.所有侧面的面积之和\n-3-知识梳理双基自测23412.圆柱、圆锥、圆台的侧面展开图及侧面积公式2πrlπrlπ(r1+r2)l\n-4-知识梳理双基自测23413.柱、锥、台和球的表面积和体积Sh4πR2\n-5-知识梳理双基自测23414.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差.②底面面积及高都相等的两个同类几何体的体积相等.(2)几个与球切、接有关的常用结论①正方体的棱长为a,球的半径为R,③正四面体的外接球与内切球的半径之比为3∶1.\n2-6-知识梳理双基自测34151.下列结论正确的打“√”,错误的打“×”.(1)圆柱的一个底面积为S,侧面展开图是一个正方形,则这个圆柱的侧面积是2πS.()(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.()(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.()(5)将圆心角为,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.()××√×√\n-7-知识梳理双基自测234152.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()答案解析解析关闭答案解析关闭\n-8-知识梳理双基自测234153.若某几何体的三视图如图所示,则此几何体的表面积是.答案解析解析关闭答案解析关闭\n-9-知识梳理双基自测234154.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案解析解析关闭答案解析关闭\n-10-知识梳理双基自测234155.如图,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,若一小虫沿其表面从点A1经过点P爬行到点C,则其爬行路程的最小值为.答案解析解析关闭答案解析关闭\n-11-考点1考点2考点3例1某几何体的三视图如图所示,则该几何体的表面积为()思考求几何体的表面积的关键是什么?答案解析解析关闭答案解析关闭\n-12-考点1考点2考点3解题心得1.几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.求旋转体的侧面积一般要进行转化,即将侧面展开化为平面图形来解决(化曲为直),因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(3)简单组合体,应搞清各构成部分,并注意重合部分的处理.(4)若以三视图的形式给出,则解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.\n-13-考点1考点2考点32.球的表面积的求法求球的表面积,关键是求球的半径.一般地,求球的半径,要学会作球的一个截面图(纬圆),利用球的半径R、截面圆的半径r、球心到截面的距离d构建直角三角形,把空间问题转化为平面问题,利用勾股定理解决,即R2=r2+d2.\n-14-考点1考点2考点3对点训练1(2020全国Ⅲ,理8)下图为某几何体的三视图,则该几何体的表面积是()C\n-15-考点1考点2考点3\n-16-考点1考点2考点3例2在梯形ABCD中,∠ABC=,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为()思考求旋转体的体积的关键是什么?答案解析解析关闭答案解析关闭\n-17-考点1考点2考点3解题心得1.求旋转体体积的关键是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.2.计算柱、锥、台的体积的关键是根据条件找出相应的底面积和高.3.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.\n-18-考点1考点2考点3对点训练2已知一个棱长为2cm的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体的体积是()答案解析解析关闭答案解析关闭\n-19-考点1考点2考点3A\n-20-考点1考点2考点3(2)四棱锥P-ABCD的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E,F分别是棱AB,CD的中点,直线EF被球面所截得的线段长为2,则该球的表面积为()A.9πB.3πC.2πD.12πD\n-21-考点1考点2考点3\n-22-考点1考点2考点3(3)若一个正四面体的表面积为S1,其内切球的表面积为S2,则思考解决与球有关的切、接问题的关键是什么?\n-23-考点1考点2考点3解题心得解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.\n-24-考点1考点2考点3对点训练3(1)已知三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,且侧棱AA1⊥平面ABC,若AB=AC=3,∠BAC=,AA1=8,则球的表面积为()A.36πB.64πC.100πD.104πC\n-25-考点1考点2考点3(2)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()A(3)已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为.\n-26-考点1考点2考点3\n-27-考点1考点2考点3(2)由三视图画出的直观图,如图所示.如图①所示,该几何体是直三棱柱ABC-A'B'C',其中AC⊥BC,AC=BC=,AA'=2,四边形ABB'A'是正方形,则将该直三棱柱补全成长方体,如图②所示.\n-28-考点1考点2考点3(3)如图所示.由题意易知BE过球心O,\n-29-思想方法——转化思想在立体几何计算中的应用空间几何体的三视图与体积、表面积结合命题是高考的热点,旨在考查学生的识图、用图能力及空间想象能力与运算能力.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.\n-30-典例如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为.\n-31-\n-32-反思提升1.利用三棱锥的“等积性”,可以把任何一个面作为三棱锥的底面.2.求体积时,可选择“容易计算”的方式来计算.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-21 12:00:05 页数:32
价格:¥3 大小:1.82 MB
文章作者:随遇而安

推荐特供

MORE