2022年高考数学一轮复习第八章立体几何2空间几何体的表面积与体积课件(新人教A版文)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/31
2/31
3/31
4/31
剩余27页未读,查看更多内容需下载
8.2空间几何体的表面积与体积\n-2-知识梳理双基自测23411.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是,表面积是侧面积与底面面积之和.所有侧面的面积之和\n-3-知识梳理双基自测23412.圆柱、圆锥、圆台的侧面展开图及侧面积公式2πrlπrlπ(r1+r2)l\n-4-知识梳理双基自测23413.柱、锥、台和球的表面积和体积Sh4πR2\n-5-知识梳理双基自测23414.常用结论(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差.②底面面积及高都相等的两个同类几何体的体积相等.(2)几个与球切、接有关的常用结论①正方体的棱长为a,球的半径为R,③正四面体的外接球与内切球的半径之比为3∶1.\n2-6-知识梳理双基自测34151.下列结论正确的打“√”,错误的打“×”.(1)若圆柱的一个底面积为S,侧面展开图是一个正方形,则这个圆柱的侧面积是2πS.()(2)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为3πa2.()(4)在△ABC中,AB=2,BC=3,∠ABC=120°,使△ABC绕直线BC旋转一周所形成的几何体的体积为9π.()(5)将圆心角为,面积为3π的扇形作为圆锥的侧面,则圆锥的表面积等于4π.()××√×√\n-7-知识梳理双基自测234152.(2020全国Ⅲ,文9)下图为某几何体的三视图,则该几何体的表面积是()C\n-8-知识梳理双基自测234153.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()答案解析解析关闭答案解析关闭\n-9-知识梳理双基自测234154.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为.答案解析解析关闭答案解析关闭\n-10-知识梳理双基自测234155.如图,在直三棱柱ABC-A1B1C1中,△ABC为直角三角形,∠ACB=90°,AC=4,BC=CC1=3.P是BC1上一动点,若一小虫沿其表面从点A1经过点P爬行到点C,则其爬行路程的最小值为.答案解析解析关闭答案解析关闭\n-11-知识梳理双基自测23415自测点评1.求多面体的表面积关键是找到其特征几何图形,它们是联系高与斜高、边长等几何元素的桥梁.求旋转体的侧面积时需要将曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.2.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.\n-12-考点1考点2考点3例1某几何体的三视图如图所示,则该几何体的表面积为()思考求几何体的表面积的关键是什么?答案解析解析关闭答案解析关闭\n-13-考点1考点2考点3解题心得1.几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.求旋转体的侧面积一般要进行转化,即将侧面展开化为平面图形来解决(化曲为直),因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(3)简单组合体,应搞清各构成部分,并注意重合部分的处理.(4)若以三视图的形式给出,则解题的关键是对给出的三视图进行分析,从中发现几何体中各元素间的位置关系及数量关系,得到几何体的直观图,然后根据条件求解.\n-14-考点1考点2考点32.球的表面积的求法求球的表面积,关键是求球的半径.一般地,求球的半径,要学会作球的一个截面图(纬圆),利用球的半径R、截面圆的半径r、球心到截面的距离d构建直角三角形,把空间问题转化为平面问题,利用勾股定理解决,即R2=r2+d2.\n-15-考点1考点2考点3对点训练1如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是则它的表面积是()A.17πB.18πC.20πD.28π答案解析解析关闭答案解析关闭\n-16-考点1考点2考点3例2已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为()答案解析解析关闭答案解析关闭\n-17-考点1考点2考点3解析:∵长方体ABCD-A1B1C1D1的体积为120,∴AB·BC·CC1=120.∵E为CC1的中点,CC1⊥底面ABCD,\n-18-考点1考点2考点3解题心得1.求旋转体体积的关键是理解所得旋转体的几何特征,确定得到计算体积所需要的几何量.2.计算柱、锥、台的体积的关键是根据条件找出相应的底面积和高.3.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.\n-19-考点1考点2考点3对点训练2学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD-A1B1C1D1挖去四棱锥O-EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm.3D打印所用原料密度为0.9g/cm3.不考虑打印损耗,制作该模型所需原料的质量为g.答案解析解析关闭答案解析关闭\n-20-考点1考点2考点3例3(1)(2020全国Ⅰ,文12)已知A,B,C为球O的球面上的三个点,☉O1为△ABC的外接圆.若☉O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π(2)长方体的长、宽、高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为.(3)若一个正四面体的表面积为S1,其内切球的表面积为S2,则思考解决与球有关的切、接问题的关键是什么?A14π\n-21-考点1考点2考点3∴球O的表面积为4πR2=64π.(2)由题意可知长方体的体对角线长等于其外接球O的直径2R,\n-22-考点1考点2考点3解题心得解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.\n-23-考点1考点2考点3对点训练3(1)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是()(2)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是()AB\n-24-考点1考点2考点3(3)已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=3,BC=,过点D作DE垂直于平面ABCD,交球O于E,则棱锥E-ABCD的体积为.\n-25-考点1考点2考点3解析:(1)由三视图画出直观图,如图①所示.该几何体是直三棱柱ABC-A'B'C',其中AC⊥BC,AC=BC=,AA'=2,四边形ABB'A'是正方形,则将该直三棱柱补全成长方体,如图②所示.\n-26-考点1考点2考点3(2)由题意知要使球的体积最大,则它与直三棱柱的若干个面相切.(3)如图所示.由题意易知BE过球心O,\n-27-考点1考点2考点31.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构特点与平面几何知识来解决.2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面.3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.1.求组合体的表面积时,组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致错误.3.易混侧面积与表面积的概念.\n-28-思想方法——转化思想在立体几何计算中的应用空间几何体的三视图与体积、表面积结合命题是高考的热点,旨在考查学生的识图、用图能力及空间想象能力与运算能力.若所给定的几何体的体积不能直接利用公式得出,则常用转换法(转换的原则是使底面面积和高易求)、分割法、补形法等方法进行求解.\n-29-典例如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别为线段AA1,B1C上的点,则三棱锥D1-EDF的体积为.\n-30-\n-31-反思提升1.利用三棱锥的“等积性”,可以把任何一个面作为三棱锥的底面.2.求体积时,可选择“容易计算”的方式来计算.
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)