首页

2019年湖南省株洲市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/24

2/24

剩余22页未读,查看更多内容需下载

2019年湖南省株洲市中考数学试卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是(  )A.−13B.13C.﹣3D.32.(3分)2×8=(  )A.42B.4C.10D.223.(3分)下列各式中,与3x2y3是同类项的是(  )A.2x5B.3x3y2C.−12x2y3D.−13y54.(3分)对于任意的矩形,下列说法一定正确的是(  )A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形5.(3分)关于x的分式方程2x−5x−3=0的解为(  )A.﹣3B.﹣2C.2D.36.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?(  )A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为(  )A.2B.3C.4D.58.(3分)下列各选项中因式分解正确的是(  )A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)29.(3分)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=kx(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则(  )\nA.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S3210.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作ak,bk)构成一个数组MK={ak,bk}(其中k=1,2…S,且将{ak,bk}与{bk,ak}视为同一个数组),若满足:对于任意的Mi={ai,bi}和Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠aj+bj,则S的最大值(  )A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a  0(填“=”或“>”或“<”).12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是  .13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB=  .14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为  .15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB=  度.\n16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD=  度.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走  步才能追到速度慢的人.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为  .三、解答题(本大题共8小题,共66分)19.(6分)计算:|−3|+π0﹣2cos30°.20.(6分)先化简,再求值:a2−a(a−1)2−a+1a,其中a=12.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1\n相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F的对应点),求障碍物的高度.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)T<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?\n23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.24.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=mx(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=3AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.\n25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;(2)若AC=BC,PB=5PD,AB+CD=2(5+1)①求证:△DHC为等腰直角三角形;②求CH的长度.26.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=12c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC\n的延长线相交于点P,若PCPA=55a2+1,求二次函数的表达式.\n2019年湖南省株洲市中考数学试卷参考答案与试题解析一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)1.(3分)﹣3的倒数是(  )A.−13B.13C.﹣3D.3【解答】解:∵﹣3×(−13)=1,∴﹣3的倒数是−13.故选:A.2.(3分)2×8=(  )A.42B.4C.10D.22【解答】解:2×8=16=4.故选:B.3.(3分)下列各式中,与3x2y3是同类项的是(  )A.2x5B.3x3y2C.−12x2y3D.−13y5【解答】解:A、2x5与3x2y3不是同类项,故本选项错误;B、3x3y2与3x2y3不是同类项,故本选项错误;C、−12x2y3与3x2y3是同类项,故本选项正确;D、−13y5与3x2y3是同类项,故本选项错误;故选:C.4.(3分)对于任意的矩形,下列说法一定正确的是(  )A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形【解答】解:A、矩形的对角线相等,但不垂直,故此选项错误;B、矩形的邻边都互相垂直,对边互相平行,故此选项错误;C、矩形的四个角都相等,正确;\nD、矩形是轴对称图形,也是中心对称图形,故此选项错误.故选:C.5.(3分)关于x的分式方程2x−5x−3=0的解为(  )A.﹣3B.﹣2C.2D.3【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.6.(3分)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?(  )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.7.(3分)若一组数据x,3,1,6,3的中位数和平均数相等,则x的值为(  )A.2B.3C.4D.5【解答】解:当x≤1时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当x≥6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去).所以x的值为2.故选:A.8.(3分)下列各选项中因式分解正确的是(  )A.x2﹣1=(x﹣1)2B.a3﹣2a2+a=a2(a﹣2)C.﹣2y2+4y=﹣2y(y+2)D.m2n﹣2mn+n=n(m﹣1)2【解答】解:A、x2﹣1=(x+1)(x﹣1),故此选项错误;\nB、a3﹣2a2+a=a2(a﹣1),故此选项错误;C、﹣2y2+4y=﹣2y(y﹣2),故此选项错误;D、m2n﹣2mn+n=n(m﹣1)2,正确.故选:D.9.(3分)如图所示,在直角平面坐标系Oxy中,点A、B、C为反比例函数y=kx(k>0)上不同的三点,连接OA、OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则(  )A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【解答】解:∵点A、B、C为反比例函数y=kx(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=12k,S△BOE=S△COF=12k,∵S△BOE﹣SOME=S△CDF﹣S△OME,∴S3=S2,故选:B.10.(3分)从﹣1,1,2,4四个数中任取两个不同的数(记作ak,bk)构成一个数组MK={ak,bk}(其中k=1,2…S,且将{ak,bk}与{bk,ak}视为同一个数组),若满足:对于任意的Mi={ai,bi}和Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠aj+bj,则S的最大值(  )A.10B.6C.5D.4【解答】解:∵﹣1+1=0,﹣1+2=1,﹣1+4=3,1+2=3,1+4=5,2+4=6,∴ai+bi共有5个不同的值.又∵对于任意的Mi={ai,bi}和Mj={ai,bj}(i≠j,1≤i≤S,1≤j≤S)都有ai+bi≠\naj+bj,∴S的最大值为5.故选:C.二、填空题(本题共8小题,每小题3分,共24分)11.(3分)若二次函数y=ax2+bx的图象开口向下,则a < 0(填“=”或“>”或“<”).【解答】解:∵二次函数y=ax2+bx的图象开口向下,∴a<0.故答案是:<.12.(3分)若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是 12 .【解答】解:∵布袋中有6个白球,4个黑球,2个红球,共有12个球,∴摸到白球的概率是612=12;故答案为:12.13.(3分)如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E、F分别为MB、BC的中点,若EF=1,则AB= 4 .【解答】解:∵E、F分别为MB、BC的中点,∴CM=2EF=2,∵∠ACB=90°,CM是斜边AB上的中线,∴AB=2CM=4,故答案为:4.14.(3分)若a为有理数,且2﹣a的值大于1,则a的取值范围为 a<1且a为有理数 .【解答】解:根据题意知2﹣a>1,解得a<1,\n故答案为:a<1且a为有理数.15.(3分)如图所示,过正五边形ABCDE的顶点B作一条射线与其内角∠EAB的角平分线相交于点P,且∠ABP=60°,则∠APB= 66 度.【解答】解:∵五边形ABCDE为正五边形,∴∠EAB=108度,∵AP是∠EAB的角平分线,∴∠PAB=54度,∵∠ABP=60°,∴∠APB=180°﹣60°﹣54°=66°.故答案为:66.16.(3分)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB相交于点E,满足∠AEC=65°,连接AD,则∠BAD= 20 度.【解答】解:连接OD,如图:∵OC⊥AB,∴∠COE=90°,∵∠AEC=65°,∴∠OCE=90°﹣65°=25°,∵OC=OD,∴∠ODC=∠OCE=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠BOD=∠DOC﹣∠COE=40°,\n∴∠BAD=12∠BOD=20°,故答案为:20.17.(3分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?“其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 250 步才能追到速度慢的人.【解答】解:设走路快的人追上走路慢的人所用时间为t,根据题意得:(100﹣60)t=100,解得:t=2.5,∴100t=100×2.5=250.答:走路快的人要走250步才能追上走路慢的人.故答案是:250.18.(3分)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5 .\n【解答】解:当光线沿O、G、B、C传输时,过点B作BF⊥GH于点F,过点C作CE⊥GH于点E,则∠OGH=∠CGE=α,设GH=a,则GF=2﹣a,则tan∠OGH=tan∠CGE,即:OHGH=BFGF,即:1a=12−a,解得:a=1,则α=45°,∴GE=CE=2,yC=1+2=3,当光线反射过点A时,同理可得:yD=1.5,落在挡板Ⅲ上的光线的长度=CD=3﹣1.5=1.5,\n故答案为1.5.三、解答题(本大题共8小题,共66分)19.(6分)计算:|−3|+π0﹣2cos30°.【解答】解:原式=3+1﹣2×32=3+1−3=1.20.(6分)先化简,再求值:a2−a(a−1)2−a+1a,其中a=12.【解答】解:a2−a(a−1)2−a+1a=a(a−1)(a−1)2−a+1a=aa−1−a+1a=a2−(a−1)(a+1)a(a−1)=a2−a2+1a(a−1)=1a(a−1),当a=12时,原式=112(12−1)=−4.21.(8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且tanα=13,若直线AF与地面l1相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线l2与地面l1平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),MN⊥l1,若小强的爸爸将汽车沿直线l1后退0.6米,通过汽车的前端F1点恰好看见障碍物的顶部N点(点D为点A的对应点,点F1为点F\n的对应点),求障碍物的高度.【解答】解:(1)由题意得,∠ABC=∠α,在Rt△ABC中,AC=1.6,tan∠ABC=tanα=13,∴BC=ACtan∠ABC=1.613=4.8m,答:BC的长度为4.8m;(2)过D作DH⊥BC于H,则四边形ADHC是矩形,∴AD=CH=BE=0.6,∵点M是线段BC的中点,∴BM=CM=2.4米,∴EM=BM﹣BE=1.8,∵MN⊥BC,∴MN∥DH,∴△EMN∽△EHD,∴MNDH=EMEH,∴MN1.6=1.84.8,∴MN=0.6,答:障碍物的高度为0.6米.22.(8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)最高气温T(单位:℃)需求量(单位:杯)\nT<2520025≤T<30250T≥30400(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足25≤T<30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?【解答】解:(1)由条形统计图知,去年六月份最高气温不低于30℃的天数为6+2=8(天);(2)去年六月份这种鲜奶一天的需求量不超过200杯的概率为3+930=25;(3)250×8﹣350×4+100×1=730(元),答:估计这一天销售这种鲜奶所获得的利润为730元.23.(8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.\n【解答】解:(1)∵正方形ABCD与正方形OEFG,对角线AC、BD∴DO=OC∵DB⊥AC,∴∠DOA=∠DOC=90°∵∠GOE=90°∴∠GOD+∠DOE=∠DOE+∠COE=90°∴∠GOD=∠COE∵GO=OE∴在△DOG和△COE中DO=OC∠GOD=∠COEGD=OE∴△DOG≌△COE(SAS)(2)如图,过点M作MH⊥DO交DO于点H∵AM=12,DA=2∴DM=32∵∠MDB=45°∴MH=DH=sin45°•DM=324,DO=cos45°•DA=2∴HO=DO﹣DH=2−324=24∴在Rt△MHO中,由勾股定理得MO=MH2+HO2=(324)2+(24)2=52\n∵DG⊥BD,MH⊥DO∴MH∥DG∴易证△OHM∽△ODG∴OHOD=MOGO=242=52GO,得GO=25则正方形OEFG的边长为2524.(8分)如图所示,在平面直角坐标系Oxy中,等腰△OAB的边OB与反比例函数y=mx(m>0)的图象相交于点C,其中OB=AB,点A在x轴的正半轴上,点B的坐标为(2,4),过点C作CH⊥x轴于点H.(1)已知一次函数的图象过点O,B,求该一次函数的表达式;(2)若点P是线段AB上的一点,满足OC=3AP,过点P作PQ⊥x轴于点Q,连结OP,记△OPQ的面积为S△OPQ,设AQ=t,T=OH2﹣S△OPQ①用t表示T(不需要写出t的取值范围);②当T取最小值时,求m的值.【解答】解:(1)将点O、B的坐标代入一次函数表达式:y=kx得:4=2k,\n解得:k=2,故一次函数表达式为:y=2x,(2)①过点B作BM⊥OA,则∠OCH=∠QPA=∠OAB=∠ABM=α,则tanα=12,sinα=15,∵OB=AB,则OM=AM=2,则点A(4,0),设:AP=a,则OC=3a,在△APQ中,sin∠APQ=QAPA=ta=sinα=15,同理PQ=ttanα=2t,则PA=a=5t,OC=15t,则点C(3t,23t),T=OH2﹣S△OPQ=(OC•sinα)2−12×(4﹣t)×2t=4t2﹣4t,②∵4>0,∴T有最小值,当t=12时,T取得最小值,而点C(3t,23t),故:m=3t×23t=32.25.(11分)四边形ABCD是⊙O的圆内接四边形,线段AB是⊙O的直径,连结AC、BD.点H是线段BD上的一点,连结AH、CH,且∠ACH=∠CBD,AD=CH,BA的延长线与CD的延长线相交与点P.(1)求证:四边形ADCH是平行四边形;\n(2)若AC=BC,PB=5PD,AB+CD=2(5+1)①求证:△DHC为等腰直角三角形;②求CH的长度.【解答】证明:(1)∵∠DBC=∠DAC,∠ACH=∠CBD∴∠DAC=∠ACH∴AD∥CH,且AD=CH∴四边形ADCH是平行四边形(2)①∵AB是直径∴∠ACB=90°=∠ADB,且AC=BC∴∠CAB=∠ABC=45°,∴∠CDB=∠CAB=45°∵AD∥CH∴∠ADH=∠CHD=90°,且∠CDB=45°∴∠CDB=∠DCH=45°∴CH=DH,且∠CHD=90°∴△DHC为等腰直角三角形;②∵四边形ABCD是⊙O的圆内接四边形,∴∠ADP=∠PBC,且∠P=∠P∴△ADP∽△CBP∴ADBC=PDPB,且PB=5PD,∴ADBC=15,AD=CH,∴CHBC=15∵∠CDB=∠CAB=45°,∠CHD=∠ACB=90°\n∴△CHD∽△ACB∴CDAB=CHBC=15∴AB=5CD∵AB+CD=2(5+1)∴5CD+CD=2(5+1)∴CD=2,且△DHC为等腰直角三角形∴CH=226.(11分)已知二次函数y=ax2+bx+c(a>0)(1)若a=1,b=﹣2,c=﹣1①求该二次函数图象的顶点坐标;②定义:对于二次函数y=px2+qx+r(p≠0),满足方程y=x的x的值叫做该二次函数的“不动点”.求证:二次函数y=ax2+bx+c有两个不同的“不动点”.(2)设b=12c3,如图所示,在平面直角坐标系Oxy中,二次函数y=ax2+bx+c的图象与x轴分别相交于不同的两点A(x1,0),B(x2,0),其中x1<0,x2>0,与y轴相交于点C,连结BC,点D在y轴的正半轴上,且OC=OD,又点E的坐标为(1,0),过点D作垂直于y轴的直线与直线CE相交于点F,满足∠AFC=∠ABC.FA的延长线与BC的延长线相交于点P,若PCPA=55a2+1,求二次函数的表达式.【解答】解:(1)①∵a=1,b=﹣2,c=﹣1∴y=x2﹣2x﹣1=(x﹣1)2﹣2∴该二次函数图象的顶点坐标为(1,﹣2)\n②证明:当y=x时,x2﹣2x﹣1=x整理得:x2﹣3x﹣1=0∴△=(﹣3)2﹣4×1×(﹣1)=13>0∴方程x2﹣3x﹣1=0有两个不相等的实数根即二次函数y=x2﹣2x﹣1有两个不同的“不动点”.(2)把b=12c3代入二次函数得:y=ax2+12c3x+c∵二次函数与x轴交于点A(x1,0),B(x2,0)(x1<0,x2>0)即x1、x2为方程ax2+12c3x+c=0的两个不相等实数根∴x1+x2=−12c3a=−c32a,x1x2=ca∵当x=0时,y=ax2+12c3x+c=c∴C(0,c)∵E(1,0)∴CE=1+c2,AE=1﹣x1,BE=x2﹣1∵DF⊥y轴,OC=OD∴DF∥x轴∴CEEF=OCOD=1∴EF=CE=1+c2,CF=21+c2∵∠AFC=∠ABC,∠AEF=∠CEB∴△AEF∽△CEB∴AECE=EFBE,即AE•BE=CE•EF∴(1﹣x1)(x2﹣1)=1+c2展开得:1+c2=x2﹣1﹣x1x2+x11+c2=−c32a−1−cac3+2ac2+2c+4a=0c2(c+2a)+2(c+2a)=0(c2+2)(c+2a)=0\n∵c2+2>0∴c+2a=0,即c=﹣2a∴x1+x2=−−8a32a=4a2,x1x2=−2aa=−2,CF=21+c2=21+4a2∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=16a4+8∴AB=x2﹣x1=16a4+8=24a4+2∵∠AFC=∠ABC,∠P=∠P∴△PFC∽△PBA∴CFAB=PCPA=55a2+1∴21+4a224a4+2=55a2+1解得:a1=1,a2=﹣1(舍去)∴c=﹣2a=﹣2,b=12c3=﹣4∴二次函数的表达式为y=x2﹣4x﹣2声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/6/3010:03:29;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-20 14:13:35 页数:24
价格:¥3 大小:287.62 KB
文章作者:180****8757

推荐特供

MORE