首页

2021年湖北省黄冈市中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/26

2/26

剩余24页未读,查看更多内容需下载

2021年湖北省黄冈市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑。1.(3分)(2021•黄冈)﹣3的相反数是()A.﹣3B.C.D.32.(3分)(2021•黄冈)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×1093.(3分)(2021•黄冈)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形B.正方形C.正六边形D.圆4.(3分)(2021•黄冈)下列计算正确的是()A.a3+a2=a5B.a3÷a2=aC.3a3•2a2=6a6D.(a﹣2)2=a2﹣45.(3分)(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.6.(3分)(2021•黄冈)高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()第1页(共26页)\nA.样本容量为400B.类型D所对应的扇形的圆心角为36°C.类型C所占百分比为30%D.类型B的人数为120人7.(3分)(2021•黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.48.(3分)(2021•黄冈)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.第2页(共26页)\n二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上).9.(3分)(2021•黄冈)式子在实数范围内有意义,则a的取值范围是.10.(3分)(2021•黄冈)正五边形的一个内角是度.11.(3分)(2021•黄冈)东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:85,87,89,91,85,92,90.则这组数据的中位数为.12.(3分)(2021•黄冈)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是.(写出一个即可)13.(3分)(2021•黄冈)在Rt△ABC中,∠C=90°,∠B=30°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP交BC于点D.则CD与BD的数量关系是.14.(3分)(2021•黄冈)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则建筑物BC的高约为m(结果保留小数点后一位).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53≈1.33)15.(3分)(2021•黄冈)人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a,b,得ab=1,记S1,䁜第3页(共26页)\nS2,…,S10,则S1+S2+…+S10=.䁜䁜16.(3分)(2021•黄冈)如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EAAH;④PH+PQ的最小值是,其中所正结论的序号是.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置.17.(7分)(2021•黄冈)计算:ʹݏ䁟0.18.(7分)(2021•黄冈)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.19.(8分)(2021•黄冈)2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.第4页(共26页)\n20.(9分)(2021•黄冈)如图,反比例函数y的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y的图象于点M,连接CN,OM.若S四边形COMN>3,求t的取值范围.21.(9分)(2021•黄冈)如图,在Rt△ABC中,∠ACB=90°,⊙O与BC,AC分别相切于点E,F,BO平分∠ABC,连接OA.(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.22.(10分)(2021•黄冈)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如表所示:甲种客车乙种客车载客量/(人/辆)4055第5页(共26页)\n租金/(元/辆)500600(1)共需租辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?23.(10分)(2021•黄冈)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.24.(12分)(2021•黄冈)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.(1)求抛物线的解析式;(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.过点P作PD⊥BC于点D,当n为何值时,△PDG≌△BNG;(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.①tan∠BOB1=;②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.第6页(共26页)\n2021年湖北省黄冈市中考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑。1.(3分)(2021•黄冈)﹣3的相反数是()A.﹣3B.C.D.3【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣3的相反数是3,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2021•黄冈)2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:470000000=4.7×108,故选:C.【点评】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.(3分)(2021•黄冈)下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形B.正方形C.正六边形D.圆【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答】解:A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称第7页(共26页)\n轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)(2021•黄冈)下列计算正确的是()A.a3+a2=a5B.a3÷a2=aC.3a3•2a2=6a6D.(a﹣2)2=a2﹣4【分析】根据同底数幂的除法运算法则,单项式乘单项式运算法则以及完全平方公式的展开即可正确求解.【解答】解:a3、a2不是同类项,因此不能用加法进行合并,故A项不符合题意,根据同底数幂的除法运算法则a3÷a2=a,故B项符合题意,根据单项式乘单项式的运算法则可得3a3•2a2=6a5,故C项不符合题意,根据完全平方公式展开(a﹣2)2=a2﹣4a+4,故D项不符合题意.故选:B.【点评】本题主要考查同底数幂的除法运算法则,单项式乘单项式运算法则以及完全平方公式的展开,熟练运用公式是解决此题的关键.5.(3分)(2021•黄冈)如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.【分析】俯视图是从上面看到的图形,据此判断即可.【解答】解:从上面看,是一行三个小正方形.故选:C.【点评】此题主要考查了简单组合体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.6.(3分)(2021•黄冈)高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书第8页(共26页)\n籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()A.样本容量为400B.类型D所对应的扇形的圆心角为36°C.类型C所占百分比为30%D.类型B的人数为120人【分析】根据A类100人占25%可计算样本容量,根据D占10%可计算其所对扇形的圆心角度数,根据C类140人÷总样本容量即可得所占百分比,总样本容量减去A,C,D三类人数即可得B类人数.【解答】解:100÷25%=400(人),∴样本容量为400,故A正确,360°×10%=36°,∴类型D所对应的扇形的圆心角为36°,故B正确,140÷400×100%=35%,∴类型C所占百分比为35%,故C错误,400﹣100﹣140﹣400×10%=120(人),∴类型B的人数为120人,故D正确,∴说法错误的是C,故选:C.第9页(共26页)\n【点评】本题主要考查统计图的知识,熟练掌握条形统计图和扇形统计图的知识是解题的关键.7.(3分)(2021•黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.4【分析】由题知,AC为直径,得OD∥BC,且OD是△ABC的中位线,OE是三角形AFC的中位线,根据勾股定理求出圆的半径即可.【解答】解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴ADAB8=4,又∵OD=3,∴OA5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.【点评】本题主要考查勾股定理,三角形中位线等知识点,熟练掌握勾股定理和三角形中位线的性质是解题的关键.8.(3分)(2021•黄冈)如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC第10页(共26页)\n于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.【分析】根据点P运动路径分段写出△CPE的面积y与点P运动的路程x间的函数关系式即可.【解答】解:∵BC∥AD,∴∠ACB=∠DAC,∵∠PEC=∠D=90°,∴△PCE∽△ACD,∴,∵AD=3,CD=4,∴AC5,∴当P在CA上时,即当0<x≤5时,PEx,CEx,2∴yPE•CEx,当P在AD上运动时,即当5<x≤8时,PE=CD=4,CE=8﹣x,∴yPE•CE4×(8﹣x)=16﹣2x,综上,当0<x≤5时,函数为二次函数图象,且y随x增大而增大,当5<x≤8时,函第11页(共26页)\n数为一次函数图象,且y随x增大而减小,故选:D.【点评】本题主要考查一次函数和二次函数的性质,熟练掌握二次函数和一次函数的性质是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上).9.(3分)(2021•黄冈)式子在实数范围内有意义,则a的取值范围是a≥﹣2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,a+2≥0,解得a≥﹣2.故答案为:a≥﹣2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.10.(3分)(2021•黄冈)正五边形的一个内角是108度.【分析】因为n边形的内角和是(n﹣2)•180°,因而代入公式就可以求出内角和,再用内角和除以内角的个数就是一个内角的度数.【解答】解:(5﹣2)•180=540°,540÷5=108°,所以正五边形的一个内角的度数是108度.【点评】本题考查正多边形的基本性质,解题时应先算出正n边形的内角和再除以n即可得到答案.11.(3分)(2021•黄冈)东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:85,87,89,91,85,92,90.则这组数据的中位数为89.【分析】将这组数据重新排列,再根据中位数的定义求解即可.【解答】解:将这组数据重新排列为:85,85,87,89,90,91,92,所以这组数据的中位数为89,故答案为:89.【点评】本题主要考查中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.12.(3分)(2021•黄冈)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,第12页(共26页)\n则m的值可以是﹣1.(写出一个即可)【分析】根据方程的系数结合根的判别式△>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,在m的范围内选一个即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1•m=4﹣4m>0,解得:m<1,取m=﹣1,故答案为:﹣1.【点评】本题考查了根的判别式,熟记“当△>0时,方程有两个不相等的实数根”是解题的关键.13.(3分)(2021•黄冈)在Rt△ABC中,∠C=90°,∠B=30°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP交BC于点D.则CD与BD的数量关系是BD=2CD.【分析】证明AD=DB=2CD,可得结论.【解答】解:∵∠C=90°,∠B=30°,∴∠CAB=90°﹣30°=60°,由作图可知AD平分∠CAB,∴∠CAD=∠BAD=30°,∴AD=2CD,∵∠BAD=∠B=30°,∴AD=DB,∴BD=2CD,故答案为:BD=2CD.【点评】本题考查作图﹣基本作图,直角三角形30°角的性质,等腰三角形的判定和性质等知识,解题的关键是求出各个角的度数,属于中考常考题型.第13页(共26页)\n14.(3分)(2021•黄冈)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则建筑物BC的高约为24.2m(结果保留小数点后一位).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53≈1.33)【分析】根据正切的定义列出关于x的方程,解方程即可.【解答】解:在Rt△BCD中,∠BDC=45°,则BC=CD,设BC=CD=x,则AC=x+8,䁢在Rt△ACD中,tan∠ADC,则x+8=x•tan53°,∴x+8=1.33x,∴x≈24.2(m),故建筑物BC的高约为24.2m,故答案为:24.2.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.15.(3分)(2021•黄冈)人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a,b,得ab=1,记S1,䁜S2,…,S10,则S1+S2+…+S10=10.䁜䁜【分析】利用分式的加减法则分别可求S1=1,S2=1,S10=1,即可求解.䁜䁜䁜【解答】解:∵S11,S2䁜䁟䁜䁟䁜䁜䁜䁜1,…,䁜䁜䁜第14页(共26页)\n䁜S101,䁜䁜䁜∴S1+S2+…+S10=1+1+…+1=10,故答案为10.【点评】本题考查了分式的加减法,找出的规律是本题的关键.16.(3分)(2021•黄冈)如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EAAH;④PH+PQ的最小值是,其中所正结论的序号是①②④.【分析】①利用正方形的性质证明△CDE≌△DAF,得到∠DCE=∠ADF进而可证;②利用正方形的性质证明△GCD≌△GCH,得到CD=CH,证明AH=AF,进而可证;③利用△DHC∽△FHA,求得AF,AH的长度,然后求出EA,进而可证;④易证CG垂直平分DH,过点D作DM⊥HC,利用垂线段最短可知DM的长度为最小值,利用等面积法可求.【解答】解:∵正方形ABCD,∴CD=AD,∠CDE=∠DAF=90°,∴∠ADF+∠CDF=90°,在△CDE和△DAF中,䁡,䁡∴△CDE≌△DAF(ASA),∴∠DCE=∠ADF,∴∠DCF+∠CDF=90°,∴∠DGC=90°,∴CE⊥DF,故①正确;第15页(共26页)\n∵CE平分∠ACD,∴∠DCE=∠HCG,在△GCD和△GCH中,∠∠hhh,hh肀∴△GCD≌△GCH(ASA),∴CD=CH,∠CDH=∠CHD,∵正方形ABCD,∴CD∥AB,∴∠CDF=∠AFD,∴∠CHD=∠AFD,∵∠CHD=∠AHF,∴∠AFD=∠AHF,∴AF=AH,∴AC=AH+CH=AF+CD=DE+CD,故②正确,设DE=AF=AH=a,∵∠AHF=∠DHC,∠CDF=∠AFH,∴△DHC∽△FHA,䁡∴,∴,∴a1,∴DE=AF=AH1,∴AE=1﹣DE=2,∴EAAH,故③错误;∵△GCD≌△GCH,∴DG=GH,∵CE⊥DF,∴CG垂直平分DH,∴DP=PH,第16页(共26页)\n当DQ⊥HC时,PH+PQ=DP+PQ有最小值,过点D作DM⊥HC,则DM的长度为PH+PQ的最小值,∵S△ADC,∴DM,故④正确.故答案为:①②④.【点评】本题综合考查了正方形的性质,全等三角形的性质,相似三角形等知识,能够合理选择正方形的性质找到相似与全等的条件是解题的关键.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置.17.(7分)(2021•黄冈)计算:ʹݏ䁟0.【分析】根据乘法的定义、零指数幂以及sin60°,然后进行乘法运算和去绝对值运算,再合并即可.【解答】解:原式1﹣2×111=0.【点评】本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,最后进行加减运算.也考查了零指数幂、以及特殊角的三角函数值.18.(7分)(2021•黄冈)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.第17页(共26页)\n【分析】(1)由两角相等的两个三角形相似可判断△ABC∽△DEC;㌳㌳2(2)由相似三角形的性质可得(),即可求解.肀【解答】证明:(1)∵∠BCE=∠ACD.∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠DCE=∠ACB,又∵∠A=∠D,∴△ABC∽△DEC;(2)∵△ABC∽△DEC;㌳㌳2∴(),肀又∵BC=6,∴CE=9.【点评】本题考查了相似三角形的判定与性质,证明△ABC∽△DEC是本题的关键.19.(8分)(2021•黄冈)2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.【分析】(1)直接根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)黄冈在第一轮抽到语文学科的概率是,第18页(共26页)\n故答案为:;(2)列表如下:物理化学历史道法(物理,道法)(化学,道法)(历史,道法)地理(物理,地理)(化学,地理)(历史,地理)生物(物理,生物)(化学,生物)(历史,生物)由表可知共有9种等可能结果,其中抽到的学科恰好是历史和地理的只有1种结果,所以抽到的学科恰好是历史和地理的概率为.肀【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.(9分)(2021•黄冈)如图,反比例函数y的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y的图象于点M,连接CN,OM.若S四边形COMN>3,求t的取值范围.【分析】(1)将点B,点A坐标代入反比例函数的解析式,可求a和k的值,利用待定系数法可求一次函数解析式;(2)先求出点C坐标,由面积关系可求解.【解答】解:(1)∵反比例函数y的图象与一次函数y=mx+n的图象相交于A(a,第19页(共26页)\n﹣1),B(﹣1,3)两点,∴k=﹣1×3=a×(﹣1),∴k=﹣3,a=3,∴点A(3,﹣1),反比例函数的解析式为y,ݏ由题意可得:,ݏ解得:,ݏ∴一次函数解析式为y=﹣x+2;(2)∵直线AB交y轴于点C,∴点C(0,2),∴S四边形COMN=S△OMN+S△OCN2×t,∵S四边形COMN>3,∴2×t>3,∴t>.【点评】本题考查了反比例函数与一次函数的交点问题,考查了利用待定系数法求解析式,反比例函数的性质等知识,求出两个解析式是解题的关键.21.(9分)(2021•黄冈)如图,在Rt△ABC中,∠ACB=90°,⊙O与BC,AC分别相切于点E,F,BO平分∠ABC,连接OA.(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.【分析】(1)有切点则连圆心,证明垂直关系;无切点则作垂线,证明等于半径;(2)将不规则图形转化为规则图形间的换算.【解答】(1)证明:第20页(共26页)\n连接OE,OF,过点O作OD⊥AB于点D,∵BC与⊙O相切于点E,∴OE⊥BC,∵BO是∠ABC的平分线,∴OD═OE,OE是圆的一条半径,∴AB是⊙O的切线,故:AB是⊙O的切线.(2)∵BC、AC与圆分别相切于点E、点D,∴OE⊥BC,OF⊥AC,∴四边形OECF是正方形,∴OE═OF═EC═FC═1,∴BC═BE+EC═4,又AC═3,∴S阴影═(S△ABC﹣S正方形OECF﹣优弧所对的S扇形EOF)═(4×3﹣1×1)═.䁢故图中阴影部分的面积是:.䁢【点评】本题考察了圆切线的判定以及图形面积之间的转化,不规则图形面积的算法一般将它转化为若干个基本规则图形的组合,分析整体与部分的和差关系.22.(10分)(2021•黄冈)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如表所示:第21页(共26页)\n甲种客车乙种客车载客量/(人/辆)4055租金/(元/辆)500600(1)共需租11辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?【分析】(1)利用租用乙种型号大客车的数量=师生人数÷每辆车的载客量,可求出租用乙种型号大客车的数量,结合共有11名教师且每辆汽车上至少要有一名教师,即可得出租车数量;(2)设租用x辆甲种型号大客车,则租用(11﹣x)辆乙种型号大客车,根据可乘坐人数=每辆车的载客量×租车数量,结合560人都有座,即可得出关于x的一元一次不等式,解之取其中的最大整数值即可得出结论;(3)由(2)中x的取值范围结合x为正整数,即可得出各租车方案,利用总租金=每辆车的租金×租车数量,可分别求出选择各方案所需租车费用,比较后即可得出结论.【解答】解:(1)∵549+11=560(人),560÷55=10(辆)……10(人),10+1=11(辆),且共有11名教师,每辆汽车上至少要有一名教师,∴共需租11辆大客车.故答案为:11.(2)设租用x辆甲种型号大客车,则租用(11﹣x)辆乙种型号大客车,依题意得:40x+55(11﹣x)≥560,解得:x≤3.答:最多可以租用3辆甲种型号大客车.(3)∵x≤3,且x为正整数,∴x=1或2或3,∴有3种租车方案,方案1:租用1辆甲种型号大客车,10辆乙种型号大客车;方案2:租用2辆甲种型号大客车,9辆乙种型号大客车;方案3:租用3辆甲种型号大客车,8辆乙种型号大客车.选择方案1所需租车费用为500×1+600×10=6500(元),第22页(共26页)\n选择方案2所需租车费用为500×2+600×9=6400(元),选择方案3所需租车费用为500×3+600×8=6300(元).∵6500>6400>6300,∴租车方案3最节省钱.【点评】本题考查了一元一次不等式的应用以及有理数的混合运算,解题的关键是:(1)利用租用乙种型号大客车的数量=师生人数÷每辆车的载客量,求出租用乙种型号大客车的数量;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)利用总租金=每辆车的租金×租车数量,分别求出选择各方案所需租车费用.23.(10分)(2021•黄冈)红星公司销售一种成本为40元/件产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.【分析】(1)根据题意写出销售量和销售单价之间的关系式即可;(2)根据销售量和销售单价之间的关系列出销售利润和单价之间的关系式求最值即可;(3)根据(2)中的函数和月销售单价不高于70元/件的取值范围,确定a值即可.【解答】解:(1)由题知,y=5﹣(x﹣50)×0.1,整理得y=10﹣0.1x(50≤x≤100);(2)设月销售利润为z,由题知,z=(x﹣40)y=(x﹣40)(10﹣0.1x)=﹣0.1x2+14x﹣400=﹣0.1(x﹣70)2+90,∴当x=70时,z有最大值为90,即当月销售单价是70元时,月销售利润最大,最大利润是90万元;(3)由(2)知,当月销售单价是70元时,月销售利润最大,即(70﹣40﹣a)×(10﹣0.1×70)=78,解得a=4,∴a的值为4.【点评】本题主要考查一次函数性质和二次函数的性质及方程的应用,熟练应用二次函第23页(共26页)\n数求最值是解题的关键.24.(12分)(2021•黄冈)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.(1)求抛物线的解析式;(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.过点P作PD⊥BC于点D,当n为何值时,△PDG≌△BNG;(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.①tan∠BOB1=;②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.【分析】(1)用待定系数法即可求解;(2)由△PDG≌△BNG,得到PG=BG(3﹣n),求出P的坐标为(n,﹣(3﹣n)(1),即可求解;(3)①由函数的平移得到函数的表达式为yx,即可求解;ݏݏ②求出直线NN1的表达式为y=﹣2(x﹣n),得到点H的坐标为(,),由点H是ݏݏNN1的中点,求出点N1的坐标为(,),即可求解.【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),则y=a(x﹣3)(x+1)=ax2﹣2ax﹣3a,故﹣3a=﹣3,解得a=1,故抛物线的表达式为y=x2﹣2x﹣3①;第24页(共26页)\n(2)①当点N在y轴右侧时,由抛物线的表达式知,点C(0,﹣3),故OB=OC=3,则∠OBC=∠OCB=45°,则NB=3﹣n=NG,则BG(3﹣n),∵△PDG≌△BNG,故PG=BG(3﹣n),则PN=3﹣n(3﹣n)=(3﹣n)(1),故点P的坐标为(n,﹣(3﹣n)(1),将点P的坐标代入抛物线表达式得:(n﹣3)(1)=n2﹣2n﹣3,解得n=3(舍去)或,故n;②当点N在y轴左侧时,同理可得:n,综上,n±;(3)①设OC的中点为R(0,),由B、R的坐标得,直线BR的表达式为yx,则将它向上平移个单位长度,得到直线OB1,此时函数的表达式为yx,故tan∠BOB1,故答案为;②设线段NN1交AB1于点H,则AB1是NN1的中垂线,第25页(共26页)\n∵tan∠BOB1,则tan∠N1NB=2,∵直线NN1的过点N(n,0),故直线NN1的表达式为y=﹣2(x﹣n)②,ݏ联立①②并解得,ݏݏݏ故点H的坐标为(,),∵点H是NN1的中点,ݏݏ由中点坐标公式得:点N1的坐标为(,),ݏݏ2ݏ将点N1的坐标代入抛物线表达式得:()﹣2×3,解得n,肀故点N的坐标为(,0)或().肀肀【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.第26页(共26页)

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-15 17:00:03 页数:26
价格:¥5 大小:186.74 KB
文章作者:yuanfeng

推荐特供

MORE