首页

2019-2020学年上海市静安区高考数学模拟试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/19

2/19

剩余17页未读,查看更多内容需下载

上海市静安区高考数学模拟试卷 一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a=  .2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)=  .3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是  .4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是  .5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为  立方米.6.(5分)已知α为锐角,且,则sinα=  .7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是  .8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为  .9.(5分)已知f(x)=ax﹣b(a>0且a≠1,b∈R),g(x)=x+第19页共19页,1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为  .10.(5分)如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:①f()=;②任意x∈[0,],都有f(﹣x)+f(+x)=4;③任意x1,x2∈(,π),且x1≠x2,都有<0.其中所有正确结论的序号是  . 二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(5分)已知等比数列{an}前n项和为Sn,则下列一定成立的是(  )A.若a3>0,则a2015<0B.若a4>0,则a2014<0C.若a3>0,则S2015>0D.若a4>0,则S2014>013.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有(  )A.336种B.320种C.192种D.144种第19页共19页,14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为(  )x3﹣24y0﹣4A.B.C.1D.215.(5分)对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A=R,运算“⊕”为普通减法;②A={Am×n|Am×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为(  )A.①②B.①③C.①②③D.②③ 三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.第19页共19页,17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.18.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.19.(18分)设集合Ma={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.第19页共19页,(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈Ma,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.20.(20分)设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<…设集合Am={n|an≤m,m∈N*},将集合Am中的元素的最大值记为bm.换句话说,bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{an}的伴随数列为1,1,1,2,2,2,3,请写出数列{an};(2)设an=3n﹣1,求数列{an}的伴随数列{bn}的前100之和;(3)若数列{an}的前n项和Sn=n+c(其中c常数),试求数列{an}的伴随数列{bn}前m项和Tm. 第19页共19页,上海市静安区高考数学模拟试卷参考答案与试题解析 一、填空题(50分)本大题共有10题,要求在答题纸相应题序的空格内直接填写结果,每个空格填对得5分,否则一律得零分.1.(5分)若复数(i是虚数单位)是纯虚数,则实数a= 4 .【解答】解:∵==为纯虚数,∴,解得a=4.故答案为:4. 2.(5分)若f(x)为R上的奇函数,当x<0时,f(x)=log2(2﹣x),则f(0)+f(2)= ﹣2 .【解答】解:f(x)为R上的奇函数,则f(﹣x)=﹣f(x),即有f(0)=0,f(﹣2)=﹣f(2),当x<0时,f(x)=log2(2﹣x),f(﹣2)=log2(2+2)=2,则f(0)+f(2)=0﹣2=﹣2.故答案为:﹣2. 3.(5分)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是  .【解答】解:正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,所以球心是底面三角形的中心,第19页共19页,设球的半径为1,所以底面三角形的边长为a,,a=该正三棱锥的体积:故答案为: 4.(5分)如图,在菱形ABCD中,AB=1,∠DAB=60°,E为CD的中点,则的值是 1 .【解答】解:在菱形ABCD中,AB=1,∠BAD=60°,=+,∴==1×1×cos60°+×12=1.故答案为:1. 5.(5分)用半径1米的半圆形薄铁皮制作圆锥型无盖容器,其容积为  立方米.【解答】解:半径为1米的半圆的周长为=π,则制作成圆锥的底面周长为π,母线长为1,设圆锥的底面半径为r,则2πr=π,即r=.∴圆锥的高为h=.∴V=×=(立方米).故答案为:. 第19页共19页,6.(5分)已知α为锐角,且,则sinα=  .【解答】解:∵α为锐角,∴α+∈(,),∵cos(α+)=,∴sin(α+)==,则sinα=sin[(α+)﹣]=sin(α+)cos﹣cos(α+)sin=×﹣×=.故答案为: 7.(5分)设函数f(x)=sin(πx),若存在x0∈(﹣1,1)同时满足以下条件:①对任意的x∈R,都有f(x)≤f(x0)成立;②x02+[f(x0)]2<m2,则m的取值范围是 (﹣∞,﹣2)∪(2,+∞) .【解答】解:根据题意:①对任意的x∈R,都有f(x)≤f(x0)成立由于:x0∈(﹣1,1)所以:对f(x)≤f(x0)成立,只需满足f(x)≤f(x0)min即可.由于f(x)=sin(πx),所以:由于②x02+[f(x0)]2<m所以当,且求出:m2>4进一步求出:m>2或m<﹣2故答案为:(﹣∞,﹣2)∪(2,+∞). 第19页共19页,8.(5分)若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则实数a的取值范围为 (﹣∞,5] .【解答】解:不等式x2<|x﹣1|+a等价于x2﹣|x﹣1|﹣a<0,设f(x)=x2﹣|x﹣1|﹣a,若不等式x2<|x﹣1|+a的解集是区间(﹣3,3)的子集,则,求得a≤5,故答案为:(﹣∞,5]. 9.(5分)已知f(x)=ax﹣b(a>0且a≠1,b∈R),g(x)=x+1,若对任意实数x均有f(x)•g(x)≤0,则的最小值为 4 .【解答】解:f(x)=ax﹣b,g(x)=x+1,那么:f(x)•g(x)≤0,即(ax﹣b)(x+1)≤0.对任意实数x均成立,可得ax﹣b=0,x+1=0,故得ab=1.那么:=4,当且仅当a=,b=2时取等号.故的最小值为4.故答案为:4. 10.(5分)如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:①f()=;②任意x∈[0,],都有f(﹣x)+f(+x)=4;第19页共19页,③任意x1,x2∈(,π),且x1≠x2,都有<0.其中所有正确结论的序号是 ①② .【解答】解:当0≤x≤arctan2时,f(x)==;当arctan2<x<,在△OBE中,f(x)=S矩形OABM﹣S△OME=2﹣=2﹣;当x=时,f(x)=2;当<x≤π﹣arctan2时,同理可得f(x)=2﹣.当π﹣arctan2<x≤π时,f(x)=4﹣=4+.于是可得:①==,正确;②对任意x∈[0,],都有f(﹣x)+f(+x)=4用换元法,以x代替﹣x,可得:f(x)+f(π﹣x)=4,因此,故②正确;③不妨设x1<x2,则<0⇔f(x1)>f(x2),显然不正确.综上只有:①②正确.故答案为:①②. 第19页共19页,二、选择题(25分)本大题共有5题,每题都给出四个结论,其中有且只有一个结论是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得5分,否则一律得零分.11.(5分)“抛物线y=ax2的准线方程为y=2”是“抛物线y=ax2的焦点与双曲线的焦点重合”的(  )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:①抛物线y=ax2的标准方程是x2=y,则其准线方程为y=﹣=2,所以a=﹣.②双曲线﹣x2=1的a=,b=1,c==2,则焦点为(0,±2),抛物线y=ax2即为x2=,y的焦点为(0,),由题意可得,=±2,解得,a=±.故选:A. 12.(5分)已知等比数列{an}前n项和为Sn,则下列一定成立的是(  )A.若a3>0,则a2015<0B.若a4>0,则a2014<0C.若a3>0,则S2015>0D.若a4>0,则S2014>0【解答】解:若a3>0,则a1q2>0,即a1>0,a2015>0;若q=1,则S2015=2015a1>0;若q≠1,则S2015=,由1﹣q和1﹣q2015同号,可得S2015>0;第19页共19页,由a4>0,可得a2014=a1q2013>0;a4>0,不能判断S2014的符号,故选C. 13.(5分)某班班会准备从含甲、乙的6名学生中选取4人发言,要求甲、乙两人至少有一人参加,那么不同的发言顺序有(  )A.336种B.320种C.192种D.144种【解答】解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C43•A44=192种情况;若甲乙两人都参加,有C22•C42•A44=144种情况,则不同的发言顺序种数192+144=336种,故选:A. 14.(5分)已知椭圆C1,抛物线C2焦点均在x轴上,C1的中心和C2顶点均为原点O,从每条曲线上各取两个点,将其坐标记录于表中,则C1的左焦点到C2的准线之间的距离为(  )x3﹣24y0﹣4A.B.C.1D.2【解答】解:由表可知:抛物线C2焦点在x轴的正半轴,设抛物线C2:y2=2px(p>0),则有=2p(x≠0),据此验证四个点知(3,﹣2),(4,﹣4)在C2上,代入求得2p=4,∴抛物线C2的标准方程为y2=4x.则焦点坐标为(1,0),准线方程为:x=﹣1,设椭圆C1:(a>b>0),把点(﹣2,0),(,)代入得,第19页共19页,,解得:,∴C1的标准方程为+y2=1;由c==,左焦点(,0),C1的左焦点到C2的准线之间的距离﹣1,故选B. 15.(5分)对于集合A,定义了一种运算“⊕”,使得集合A中的元素间满足条件:如果存在元素e∈A,使得对任意a∈A,都有e⊕a=a⊕e=a,则称元素e是集合A对运算“⊕”的单位元素.例如:A=R,运算“⊕”为普通乘法;存在1∈R,使得对任意a∈R,都有1×a=a×1=a,所以元素1是集合R对普通乘法的单位元素.下面给出三个集合及相应的运算“⊕”:①A=R,运算“⊕”为普通减法;②A={Am×n|Am×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集.其中对运算“⊕”有单位元素的集合序号为(  )A.①②B.①③C.①②③D.②③【解答】解:①若A=R,运算“⊕”为普通减法,而普通减法不满足交换律,故没有单位元素;②A={Am×n|Am×n表示m×n阶矩阵,m∈N*,n∈N*},运算“⊕”为矩阵加法,其单位元素为全为0的矩阵;③A={X|X⊆M}(其中M是任意非空集合),运算“⊕”为求两个集合的交集,其单位元素为集合M.故选D.第19页共19页, 三、解答题(本题满分84分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.16.(12分)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,长为π,长为,其中B1与C在平面AA1O1O的同侧.(1)求三棱锥C﹣O1A1B1的体积;(2)求异面直线B1C与AA1所成的角的大小.【解答】解:(1)连结O1B1,则∠O1A1B1=∠A1O1B1=,∴△O1A1B1为正三角形,∴=,==.(2)设点B1在下底面圆周的射影为B,连结BB1,则BB1∥AA1,∴∠BB1C为直线B1C与AA1所成角(或补角),BB1=AA1=1,连结BC、BO、OC,∠AOB=∠A1O1B1=,,∴∠BOC=,∴△BOC为正三角形,∴BC=BO=1,∴tan∠BB1C=1,∴直线B1C与AA1所成角大小为45°.第19页共19页, 17.(14分)设双曲线C:,F1,F2为其左右两个焦点.(1)设O为坐标原点,M为双曲线C右支上任意一点,求的取值范围;(2)若动点P与双曲线C的两个焦点F1,F2的距离之和为定值,且cos∠F1PF2的最小值为,求动点P的轨迹方程.【解答】解:(1)设M(x,y),,左焦点,=…(4分)=()对称轴,…(3分)(2)由椭圆定义得:P点轨迹为椭圆,,|PF1|+|PF2|=2a=…(4分)由基本不等式得,当且仅当|PF1|=|PF2|时等号成立,b2=4第19页共19页,所求动点P的轨迹方程为…(3分) 18.(20分)如图,在海岸线EF一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC,该曲线段是函数y=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)),x∈[﹣4,0]的图象,图象的最高点为B(﹣1,2).边界的中间部分为长1千米的直线段CD,且CD∥EF.游乐场的后一部分边界是以O为圆心的一段圆弧.(1)求曲线段FGBC的函数表达式;(2)曲线段FGBC上的入口G距海岸线EF最近距离为1千米,现准备从入口G修一条笔直的景观路到O,求景观路GO长;(3)如图,在扇形ODE区域内建一个平行四边形休闲区OMPQ,平行四边形的一边在海岸线EF上,一边在半径OD上,另外一个顶点P在圆弧上,且∠POE=θ,求平行四边形休闲区OMPQ面积的最大值及此时θ的值.【解答】解:(1)由已知条件,得A=2,又∵,,∴.又∵当x=﹣1时,有y=2sin(﹣+φ)=2,∴φ=.∴曲线段FGBC的解析式为,x∈[﹣4,0].(2)由=1得x=6k+(﹣1)k﹣4(k∈Z),又x∈[﹣4,0],∴k=0,x=﹣3.∴G(﹣3,1).∴OG=.第19页共19页,∴景观路GO长为千米.(3)如图,OC=,CD=1,∴OD=2,,作PP1⊥x轴于P1点,在Rt△OPP1中,PP1=OPsinθ=2sinθ,在△OMP中,,∴=.S平行四边形OMPQ=OM•PP1====θ∈(0,).当时,即时,平行四边形面积最大值为. 19.(18分)设集合Ma={f(x)|存在正实数a,使得定义域内任意x都有f(x+a)>f(x)}.(1)若f(x)=2x﹣x2,试判断f(x)是否为M1中的元素,并说明理由;(2)若,且g(x)∈Ma,求a的取值范围;(3)若(k∈R),且h(x)∈M2,求h(x)的最小值.【解答】解:(1)∵f(1)=f(0)=1,∴f(x)∉M1.…(4分)(2)由…(2分)∴,…(3分)故a>1.…(1分)第19页共19页,(3)由,…(1分)即:∴对任意x∈[1,+∞)都成立∴…(3分)当﹣1<k≤0时,h(x)min=h(1)=log3(1+k);…(1分)当0<k<1时,h(x)min=h(1)=log3(1+k);…(1分)当1≤k<3时,.…(1分)综上:…(1分) 20.(20分)设数列{an}满足:①a1=1;②所有项an∈N*;③1=a1<a2<…<an<an+1<…设集合Am={n|an≤m,m∈N*},将集合Am中的元素的最大值记为bm.换句话说,bm是数列{an}中满足不等式an≤m的所有项的项数的最大值.我们称数列{bn}为数列{an}的伴随数列.例如,数列1,3,5的伴随数列为1,1,2,2,3.(1)若数列{an}的伴随数列为1,1,1,2,2,2,3,请写出数列{an};(2)设an=3n﹣1,求数列{an}的伴随数列{bn}的前100之和;(3)若数列{an}的前n项和Sn=n+c(其中c常数),试求数列{an}的伴随数列{bn}前m项和Tm.【解答】解:(1)1,4,7.(2)由,得∴当1≤m≤2,m∈N*时,b1=b2=1,当3≤m≤8,m∈N*时,b3=b4=…=b8=2,当9≤m≤26,m∈N*时,b9=b10=…=b26=3,当27≤m≤80,m∈N*时,b27=b28=…=b80=4,第19页共19页,当81≤m≤100,m∈N*时,b81=b82=…=b100=5,∴b1+b2+…+b100=1×2+2×6+3×18+4×54+5×20=384.(3)∵a1=S1=1+c=1∴c=0,当n≥2时,an=Sn﹣Sn﹣1=3n﹣2∴…(2分)由an=3n﹣2≤m得:因为使得an≤m成立的n的最大值为bm,所以,当m=3t﹣2(t∈N*)时:,当m=3t﹣1(t∈N*)时:,当m=3t(t∈N*)时:,所以(其中t∈N*). 第19页共19页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-05-19 10:10:27 页数:19
价格:¥5 大小:351.05 KB
文章作者:yuanfeng

推荐特供

MORE