首页

2021年河北省中考数学试卷

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/41

2/41

剩余39页未读,查看更多内容需下载

2021年河北省中考数学试卷一、选择题(本大题有16个小题,共42分。1~10小题各3分,11~16小题各2分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是(  )A.aB.bC.cD.d2.(3分)不一定相等的一组是(  )A.a+b与b+aB.3a与a+a+aC.a3与a•a•aD.3(a+b)与3a+b3.(3分)已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是(  )A.>B.<C.≥D.=4.(3分)与结果相同的是(  )A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣15.(3分)能与﹣(﹣)相加得0的是(  )A.﹣﹣B.+C.﹣+D.﹣+6.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是(  )第41页(共41页),A.A代B.B代C.C代D.B代7.(3分)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案(  )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=(  )A.1cmB.2cmC.3cmD.4cm9.(3分)若取1.442,计算﹣3﹣98的结果是(  )A.﹣100B.﹣144.2C.144.2D.﹣0.0144210.(3分)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO第41页(共41页),=2,则S正六边边ABCDEF的值是(  )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是(  )A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是(  )A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,第41页(共41页),且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是(  )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“(  )”应填的颜色是(  )A.蓝B.粉C.黄D.红15.(2分)由(﹣)值的正负可以比较A=与的大小,下列正确的是(  )A.当c=﹣2时,A=B.当c=0时,A≠C.当c<﹣2时,A>D.当c<0时,A<16.(2分)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.第41页(共41页),结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是(  )A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为  ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片  块.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应  (填“增加”或“减少”)  度.19.(4分)用绘图软件绘制双曲线m:y=与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为  ;第41页(共41页),(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k=  .三、解答题(本大题有7个小题,共66分。解答应写出文字说明、证明过程或演算步骤)20.(8分)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.21.(9分)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x个.(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.22.(9分)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口A向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.第41页(共41页),23.(9分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]24.(9分)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为An(n为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.(1)通过计算比较直径和劣弧长度哪个更长;(2)连接A7A11,则A7A11和PA1有什么特殊位置关系?请简要说明理由;(3)求切线长PA7的值.第41页(共41页),25.(10分)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]26.(12分)在一平面内,线段AB=20,线段BC=CD=DA=10,将这四条线段顺次首尾相接.把AB固定,让AD绕点A从AB开始逆时针旋转角α(α>0°)到某一位置时,BC,CD将会跟随出现到相应的位置.论证:如图1,当AD∥BC时,设AB与CD交于点O,求证:AO=10;发现:当旋转角α=60°时,∠ADC的度数可能是多少?第41页(共41页),尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:①如图2,设点D与B的距离为d,若∠BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);②当点C在AB下方,且AD与CD垂直时,直接写出a的余弦值.第41页(共41页),2021年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分。1~10小题各3分,11~16小题各2分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是(  )A.aB.bC.cD.d【解答】解:利用直尺画出图形如下:可以看出线段a与m在一条直线上.故答案为:a.故选:A.2.(3分)不一定相等的一组是(  )A.a+b与b+aB.3a与a+a+aC.a3与a•a•aD.3(a+b)与3a+b【解答】解:A:因为a+b=b+a,所以A选项一定相等;B:因为a+a+a=3a,所以B选项一定相等;C:因为a•a•a=a3,所以C选项一定相等;D:因为3(a+b)=3a+3b,所以3(a+b)与3a+b不一定相等.第41页(共41页),故选:D.3.(3分)已知a>b,则一定有﹣4a□﹣4b,“□”中应填的符号是(  )A.>B.<C.≥D.=【解答】解:根据不等式的性质,不等式两边同时乘以负数,不等号的方向改变.∵a>b,∴﹣4a<﹣4b.故选:B.4.(3分)与结果相同的是(  )A.3﹣2+1B.3+2﹣1C.3+2+1D.3﹣2﹣1【解答】解:===2,∵3﹣2+1=2,故A符合题意;∵3+2﹣1=4,故B不符合题意;∵3+2+1=6,故C不符合题意;∵3﹣2﹣1=0,故D不符合题意.故选:A.5.(3分)能与﹣(﹣)相加得0的是(  )A.﹣﹣B.+C.﹣+D.﹣+【解答】解:﹣(﹣)=﹣+,与其相加得0的是﹣+的相反数.﹣+的相反数为+﹣,故选:C.6.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是(  )第41页(共41页),A.A代B.B代C.C代D.B代【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是4.故选:A.7.(3分)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案(  )A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是【解答】解:方案甲中,连接AC,如图所示:∵四边形ABCD是平行四边形,O为BD的中点,∴OB=OD,OA=OC,∵BN=NO,OM=MD,∴NO=OM,∴四边形ANCM为平行四边形,方案甲正确;方案乙中:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,第41页(共41页),∴∠ABN=∠CDM,∵AN⊥B,CM⊥BD,∴AN∥CM,∠ANB=∠CMD,在△ABN和△CDM中,,∴△ABN≌△CDM(AAS),∴AN=CM,又∵AN∥CM,∴四边形ANCM为平行四边形,方案乙正确;方案丙中:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,AB∥CD,∴∠ABN=∠CDM,∵AN平分∠BAD,CM平分∠BCD,∴∠BAN=∠DCM,在△ABN和△CDM中,,∴△ABN≌△CDM(ASA),∴AN=CM,∠ANB=∠CMD,∴∠ANM=∠CMN,∴AN∥CM,∴四边形ANCM为平行四边形,方案丙正确;故选:A.8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB=(  )第41页(共41页),A.1cmB.2cmC.3cmD.4cm【解答】解:如图:过O作OM⊥CD,垂足为M,过O作ON⊥AB,垂足为N,∵CD∥AB,∴△CDO∽ABO,即相似比为,∴=,∵OM=15﹣7=8,ON=11﹣7=4,∴=,=,∴AB=3,故选:C.9.(3分)若取1.442,计算﹣3﹣98的结果是(  )A.﹣100B.﹣144.2C.144.2D.﹣0.01442【解答】解:∵取1.442,∴原式=×(1﹣3﹣98)第41页(共41页),=1.442×(﹣100)=﹣144.2.故选:B.10.(3分)如图,点O为正六边形ABCDEF对角线FD上一点,S△AFO=8,S△CDO=2,则S正六边边ABCDEF的值是(  )A.20B.30C.40D.随点O位置而变化【解答】解:设正六边形ABCDEF的边长为x,过E作FD的垂线,垂足为M,连接AC,∵∠FED=120°,FE=ED,∴∠EFD=∠FDE,∴∠EDF=(180°﹣∠FED)=30°,∵正六边形ABCDEF的每个角为120°.∴∠CDF=120°﹣∠EDF=90°.同理∠AFD=∠FAC=∠ACD=90°,∴四边形AFDC为矩形,∵S△AFO=FO×AF,S△CDO=OD×CD,在正六边形ABCDEF中,AF=CD,∴S△AFO+S△CDO=FO×AF+OD×CD=(FO+OD)×AF=FD×AF第41页(共41页),=10,∴FD×AF=20,DM=cos30°DE=x,DF=2DM=x,EM=sin30°DE=,∴S正六边形ABCDEF=S矩形AFDC+S△EFD+S△ABC=AF×FD+2S△EFD=x•x+2×x•x=x2+x2=20+10=30,故选:B.11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是(  )A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<0【解答】解:﹣6与6两点间的线段的长度=6﹣(﹣6)=12,六等分后每个等分的线段的长度=12÷6=2,∴a1,a2,a3,a4,a5表示的数为:﹣4,﹣2,0,2,4,A选项,a3=﹣6+2×3=0,故该选项错误;B选项,|﹣4|≠2,故该选项错误;C选项,﹣4+(﹣2)+0+2+4=0,故该选项正确;第41页(共41页),D选项,﹣2+4=2>0,故该选项错误;故选:C.12.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是(  )A.0B.5C.6D.7【解答】解:连接OP1,OP2,P1P2,∵点P关于直线l,m的对称点分别是点P1,P2,∴OP1=OP=2.8,OP=OP2=2.8,OP1+OP2>P1P2,P1P2<5.6,故选:B.13.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)第41页(共41页),又∵135°=76°+59°(计算所得)∴∠ACD=∠A+∠B(等量代换).下列说法正确的是(  )A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理【解答】解:∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,具有一般性,无需再证明其他形状的三角形,∴A的说法不正确,不符合题意;∵证法1按照定理证明的一般步骤,从已知出发经过严谨的推理论证,得出结论的正确,∴B的说法正确,符合题意;∵定理的证明必须经过严谨的推理论证,不能用特殊情形来说明,∴C的说法不正确,不符合题意;∵定理的证明必须经过严谨的推理论证,与测量次解答数的多少无关,∴D的说法不正确,不符合题意;综上,B的说法正确.故选:B.14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“(  )”应填的颜色是(  )第41页(共41页),A.蓝B.粉C.黄D.红【解答】解:根据题意得:5÷10%=50(人),16÷50%=32%,则喜欢红色的人数是:50×28%=14(人),50﹣16﹣5﹣14=15(人),∵柱的高度从高到低排列,∴图2中“(  )”应填的颜色是红色.故选:D.15.(2分)由(﹣)值的正负可以比较A=与的大小,下列正确的是(  )A.当c=﹣2时,A=B.当c=0时,A≠C.当c<﹣2时,A>D.当c<0时,A<【解答】解:A选项,当c=﹣2时,A==﹣,故该选项不符合题意;B选项,当c=0时,A=,故该选项不符合题意;C选项,﹣=﹣=,∵c<﹣2,∴2+c<0,c<0,∴2(2+c)<0,∴>0,∴A>,故该选项符合题意;D选项,当c<0时,∵2(2+c)的正负无法确定,∴A与的大小就无法确定,故该选项不符合题意;故选:C.16.(2分)如图,等腰△AOB中,顶角∠AOB=40°,用尺规按①到④的步骤操作:第41页(共41页),①以O为圆心,OA为半径画圆;②在⊙O上任取一点P(不与点A,B重合),连接AP;③作AB的垂直平分线与⊙O交于M,N;④作AP的垂直平分线与⊙O交于E,F.结论Ⅰ:顺次连接M,E,N,F四点必能得到矩形;结论Ⅱ:⊙O上只有唯一的点P,使得S扇形FOM=S扇形AOB.对于结论Ⅰ和Ⅱ,下列判断正确的是(  )A.Ⅰ和Ⅱ都对B.Ⅰ和Ⅱ都不对C.Ⅰ不对Ⅱ对D.Ⅰ对Ⅱ不对【解答】解:如图,连接EM,EN,MF.NF.∵OM=ON,OE=OF,∴四边形MENF是平行四边形,∵EF=MN,∴四边形MENF是矩形,故(Ⅰ)正确,观察图象可知当∠MOF=∠AOB,∴S扇形FOM=S扇形AOB,观察图象可知,这样的点P不唯一,故(Ⅱ)错误,故选:D.第41页(共41页),二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 a2+b2 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 4 块.【解答】解:(1)由图可知:一块甲种纸片面积为a2,一块乙种纸片的面积为b2,一块丙种纸片面积为ab,∴取甲、乙纸片各1块,其面积和为a2+b2,故答案为:a2+b2;(2)设取丙种纸片x块才能用它们拼成一个新的正方形,∴a2+4b2+xab是一个完全平方式,∴x为4,故答案为:4.18.(4分)如图是可调躺椅示意图(数据如图),AE与BD的交点为C,且∠A,∠B,∠E保持不变.为了舒适,需调整∠D的大小,使∠EFD=110°,则图中∠D应 减小 (填“增加”或“减少”) 10 度.第41页(共41页),【解答】解:延长EF,交CD于点G,如图:∵∠ACB=180°﹣50°﹣60°=70°,∴∠ECD=∠ACB=70°.∵∠DGF=∠DCE+∠E,∴∠DGF=70°+30°=100°.∵∠EFD=110°,∠EFD=∠DGF+∠D,∴∠D=10°.而图中∠D=20°,∴∠D应减小10°.故答案为:减小,10.19.(4分)用绘图软件绘制双曲线m:y=与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为 (4,15) ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k= 4 .第41页(共41页),【解答】解:(1)a=15时,y=15,由得:,故答案为:(4,15);(2)由得,∴A(﹣50,﹣1.2),由得,∴B(﹣40,﹣1.5),为能看到m在A(﹣50,﹣1.2)和B(﹣40,﹣1.5)之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,∴整数k=4.故答案为:4.三、解答题(本大题有7个小题,共66分。解答应写出文字说明、证明过程或演算步骤)20.(8分)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.【解答】(1)由题意可得:Q=4m+10n;(2)将m=5×104,n=3×103代入(1)式得:Q=4×5×104+10×3×103=2.3×105.21.(9分)已知训练场球筐中有A、B两种品牌的乒乓球共101个,设A品牌乒乓球有x第41页(共41页),个.(1)淇淇说:“筐里B品牌球是A品牌球的两倍.”嘉嘉根据她的说法列出了方程:101﹣x=2x.请用嘉嘉所列方程分析淇淇的说法是否正确;(2)据工作人员透露:B品牌球比A品牌球至少多28个,试通过列不等式的方法说明A品牌球最多有几个.【解答】解:(1)嘉嘉所列方程为101﹣x=2x,解得:x=33,又∵x为整数,∴x=33不合题意,∴淇淇的说法不正确.(2)设A品牌乒乓球有x个,则B品牌乒乓球有(101﹣x)个,依题意得:101﹣x﹣x≥28,解得:x≤36,又∵x为整数,∴x可取的最大值为36.答:A品牌球最多有36个.22.(9分)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同.(1)求嘉淇走到十字道口A向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.【解答】解:(1)嘉淇走到十字道口A向北走的概率为;第41页(共41页),(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为=,向南参观的概率=向北参观的概率=向东参观的概率=,∴向西参观的概率大.23.(9分)如图是某机场监控屏显示两飞机的飞行图象,1号指挥机(看成点P)始终以3km/min的速度在离地面5km高的上空匀速向右飞行,2号试飞机(看成点Q)一直保持在1号机P的正下方.2号机从原点O处沿45°仰角爬升,到4km高的A处便立刻转为水平飞行,再过1min到达B处开始沿直线BC降落,要求1min后到达C(10,3)处.(1)求OA的h关于s的函数解析式,并直接写出2号机的爬升速度;(2)求BC的h关于s的函数解析式,并预计2号机着陆点的坐标;(3)通过计算说明两机距离PQ不超过3km的时长是多少.[注:(1)及(2)中不必写s的取值范围]【解答】解:(1)∵2号飞机爬升角度为45°,∴OA上的点的横纵坐标相同.第41页(共41页),∴A(4,4).设OA的解析式为:h=ks,∴4k=4.∴k=1.∴OA的解析式为:h=s.∵2号试飞机一直保持在1号机的正下方,∴它们的飞行的时间和飞行的水平距离相同.∵2号机的爬升到A处时水平方向上移动了4km,爬升高度为4km,又1号机的飞行速度为3km/min,∴2号机的爬升速度为:4÷=3km/min.(2)设BC的解析式为h=ms+n,由题意:B(7,4),∴,解得:.∴BC的解析式为h=.令h=0,则s=19.∴预计2号机着陆点的坐标为(19,0).(3)∵PQ不超过3km,∴5﹣h≤3.∴,解得:2≤s≤13.∴两机距离PQ不超过3km的时长为:(13﹣2)÷3=min.24.(9分)如图,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为An(n为1~12的整数),过点A7作⊙O的切线交A1A11延长线于点P.(1)通过计算比较直径和劣弧长度哪个更长;第41页(共41页),(2)连接A7A11,则A7A11和PA1有什么特殊位置关系?请简要说明理由;(3)求切线长PA7的值.【解答】解:(1)由题意,∠A7OA11=120°,∴的长==4π>12,∴比直径长.(2)结论:PA1⊥A7A11.理由:连接A1A7.∵A1A7是⊙O的直径,∴∠A7A11A1=90°,∴PA1⊥A7A11.(3)∵PA7是⊙O的切线,∴PA7⊥A1A7,∴∠PA7A1=90°,∵∠PA1A7=60°,A1A7=12,∴PA7=A1A7•tan60°=12.第41页(共41页),25.(10分)如图是某同学正在设计的一动画示意图,x轴上依次有A,O,N三个点,且AO=2,在ON上方有五个台阶T1~T5(各拐角均为90°),每个台阶的高、宽分别是1和1.5,台阶T1到x轴距离OK=10.从点A处向右上方沿抛物线L:y=﹣x2+4x+12发出一个带光的点P.(1)求点A的横坐标,且在图中补画出y轴,并直接指出点P会落在哪个台阶上;(2)当点P落到台阶上后立即弹起,又形成了另一条与L形状相同的抛物线C,且最大高度为11,求C的解析式,并说明其对称轴是否与台阶T5有交点;(3)在x轴上从左到右有两点D,E,且DE=1,从点E向上作EB⊥x轴,且BE=2.在△BDE沿x轴左右平移时,必须保证(2)中沿抛物线C下落的点P能落在边BD(包括端点)上,则点B横坐标的最大值比最小值大多少?[注:(2)中不必写x的取值范围]【解答】解:(1)图形如图所示,由题意台级T4左边的端点坐标(4.5,7),右边的端点(6,7),对于抛物线y=﹣x2+4x+12,令y=0,x2﹣4x﹣12=0,解得x=﹣2或6,∴A(﹣2,0),∴点A的横坐标为﹣2,当x=4.5时,y=9.75>7,当x=6时,y=0<7,当y=7时,7=﹣x2+4x+12,解得x=﹣1或5,∴抛物线与台级T4有交点,设交点为R(5,7),第41页(共41页),∴点P会落在哪个台阶T4上.(2)由题意抛物线C:y=﹣x2+bx+c,经过R(5,7),最高点的纵坐标为11,∴,解得或(舍弃),∴抛物线C的解析式为y=﹣x2+14x﹣38,对称轴x=7,∵台阶T5的左边的端点(6,6),右边的端点为(7.5,6),∴抛物线C的对称轴与台阶T5有交点.(3)对于抛物线C:y=﹣x2+14x﹣38,令y=0,得到x2﹣14x+38=0,解得x=7±,∴抛物线C交x轴的正半轴于(7+,0),当y=2时,2=﹣x2+14x﹣38,解得x=4或40,∴抛物线经过(10,2),Rt△BDE中,∠DEB=90°,DE=1,BE=2,∴当点D与(7+,0)重合时,点B的横坐标的值最大,最大值为8+,当点B与(10,2)重合时,点B的横坐标最小,最小值为10,∴点B横坐标的最大值比最小值大﹣1.26.(12分)在一平面内,线段AB=20,线段BC=CD=DA第41页(共41页),=10,将这四条线段顺次首尾相接.把AB固定,让AD绕点A从AB开始逆时针旋转角α(α>0°)到某一位置时,BC,CD将会跟随出现到相应的位置.论证:如图1,当AD∥BC时,设AB与CD交于点O,求证:AO=10;发现:当旋转角α=60°时,∠ADC的度数可能是多少?尝试:取线段CD的中点M,当点M与点B距离最大时,求点M到AB的距离;拓展:①如图2,设点D与B的距离为d,若∠BCD的平分线所在直线交AB于点P,直接写出BP的长(用含d的式子表示);②当点C在AB下方,且AD与CD垂直时,直接写出a的余弦值.【解答】论证:证明:∵AD∥BC,∴∠A=∠B,∠C=∠D,在△AOD和△BOC中,,∴△AOD≌△BOC(ASA),∴AO=BO,∵AO+BO=AB=20,第41页(共41页),∴AO=10;发现:设AB的中点为O,如图:当AD从初始位置AO绕A顺时针旋转60°时,BC也从初始位置BC'绕点B顺时针旋转60°,而BO=BC'=10,∴△BC'O是等边三角形,∴BC旋转到BO的位置,即C以O重合,∵AO=AD=CD=10,∴△ADC是等边三角形,∴∠ADC=60°;尝试:取线段CD的中点M,当点M与点B距离最大时,D、C、B共线,过D作DQ⊥AB于Q,过M作MN⊥AB于N,如图:由已知可得AD=10,BD=BC+CD=20,BM=CM+BC=15,设AQ=x,则BQ=20﹣x,∵AD2﹣AQ2=DQ2=BD2﹣BQ2,∴100﹣x2=400﹣(20﹣x)2,解得x=,∴AQ=,∴DQ==,第41页(共41页),∵DQ⊥AB,MN⊥AB,∴MN∥DQ,∴=,即=,∴MN=,∴点M到AB的距离为;拓展:①设直线CP交DB于H,过G作DG⊥AB于G,连接DP,如图:∵BC=DC=10,CP平分∠BCD,∴∠BHC=∠DHC=90°,BH=BD=d,设BG=m,则AG=20﹣m,∵AD2﹣AG2=BD2﹣BG2,∴100﹣(20﹣m)2=d2﹣m2,∴m=,∴BG=,∵∠BHP=∠BGD=90°,∠PBH=∠DBG,∴△BHP∽△BGD,∴=,∴BP==;②过B作BG⊥CD于G,如图:第41页(共41页),设AN=t,则BN=20﹣t,DN==,∵∠D=∠BGN=90°,∠AND=∠BNG,∴△ADN∽△BGN,∴==,即==,∴NG=,BG=,Rt△BCG中,BC=10,∴CG==,∵CD=10,∴DN+NG+CG=10,即++=10,∴t+(20﹣t)+20=10t,20+20=10t,即2=t﹣2,两边平方,整理得:3t2﹣40t=﹣4t,∵t≠0,∴3t﹣40=﹣4,解得t=(大于20,舍去)或t=,∴AN=,∴cosα===.第41页(共41页),方法二:过C作CK⊥AB于K,过F作FH⊥AC于H,如图:∵AD=CD=10,AD⊥DC,∴AC2=200,∵AC2﹣AK2=BC2﹣BK2,∴200﹣AK2=100﹣(20﹣AK)2,解得AK=,∴CK==,Rt△ACK中,tan∠KAC==,Rt△AFH中,tan∠KAC==,设FH=n,则CH=FH=n,AH=5n,∵AC=AH+CH=10,∴5n+n=10,解得n=,∴AF==n=•=,Rt△ADF中,cosα===.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布第41页(共41页),2021年北京市中考数学试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。1.如图是某几何体的展开图,该几何体是(  )A.长方体B.圆柱C.圆锥D.三棱柱2.党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.2014﹣2018年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为(  )A.0.1692×1012B.1.692×1012C.1.692×1011D.16.92×10103.如图,点O在直线AB上,OC⊥OD.若∠AOC=120°,则∠BOD的大小为(  )A.30°B.40°C.50°D.60°4.下列多边形中,内角和最大的是(  )A.B.C.D.5.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是(  )第41页(共41页),A.a>﹣2B.|a|>bC.a+b>0D.b﹣a<06.同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是(  )A.B.C.D.7.已知432=1849,442=1936,452=2025,462=2116.若n为整数且n<<n+1,则n的值为(  )A.43B.44C.45D.468.如图,用绳子围成周长为10m的矩形,记矩形的一边长为xm,它的邻边长为ym,矩形的面积为Sm2.当x在一定范围内变化时,y和S都随x的变化而变化,则y与x,S与x满足的函数关系分别是(  )A.一次函数关系,二次函数关系B.反比例函数关系,二次函数关系C.一次函数关系,反比例函数关系D.反比例函数关系,一次函数关系二、填空题(共16分,每题2分)9.若在实数范围内有意义,则实数x的取值范围是  .10.分解因式:5x2﹣5y2=  .11.方程=的解为  .12.在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为  .13.如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB=  .14.如图,在矩形ABCD中,点E,F分别在BC,AD上,AF=EC第41页(共41页),.只需添加一个条件即可证明四边形AECF是菱形,这个条件可以是  (写出一个即可).15.有甲、乙两组数据,如下表所示:甲1112131415乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2  s乙2(填“>”,“<”或“=”).16.某企业有A,B两条加工相同原材料的生产线.在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.第一天,该企业将5吨原材料分配到A,B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到A生产线的吨数与分配到B生产线的吨数的比为  .第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B生产线分配了n吨原材料.若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则的值为  .三、解答题(共68分,第17-20题,每题5分,第21-22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程。17.计算:2sin60°++|﹣5|﹣(π+)0.18.解不等式组:.19.已知a2+2b2﹣1=0,求代数式(a﹣b)2+b(2a+b)的值.20.《淮南子・天文训》中记载了一种确定东西方向的方法,大意是:日出时,在地面上点A处立一根杆,在地面上沿着杆的影子的方向取一点B,使B,A两点间的距离为10步(步是古代的一种长度单位),在点B处立一根杆;日落时,在地面上沿着点B处的杆的影子的方向取一点C,使C,B两点间的距离为10步,在点C处立一根杆.取CA的中点D,那么直线DB表示的方向为东西方向.第41页(共41页),(1)上述方法中,杆在地面上的影子所在直线及点A,B,C的位置如图所示.使用直尺和圆规,在图中作CA的中点D(保留作图痕迹);(2)在如图中,确定了直线DB表示的方向为东西方向.根据南北方向与东西方向互相垂直,可以判断直线CA表示的方向为南北方向,完成如下证明.证明:在△ABC中,BA=  ,D是CA的中点,∴CA⊥DB(  )(填推理的依据).∵直线DB表示的方向为东西方向,∴直线CA表示的方向为南北方向.21.已知关于x的一元二次方程x2﹣4mx+3m2=0.(1)求证:该方程总有两个实数根;(2)若m>0,且该方程的两个实数根的差为2,求m的值.22.如图,在四边形ABCD中,∠ACB=∠CAD=90°,点E在BC上,AE∥DC,EF⊥AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分∠BAC,BE=5,cosB=,求BF和AD的长.23.在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.第41页(共41页),24.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,AD⊥BC于点E.(1)求证:∠BAD=∠CAD;(2)连接BO并延长,交AC于点F,交⊙O于点G,连接GC.若⊙O的半径为5,OE=3,求GC和OF的长.25.为了解甲、乙两座城市的邮政企业4月份收入的情况,从这两座城市的邮政企业中,各随机抽取了25家邮政企业,获得了它们4月份收入(单位:百万元)的数据,并对数据进行整理、描述和分析.下面给出了部分信息.a.甲城市邮政企业4月份收入的数据的频数分布直方图如下(数据分成5组:6≤x<8,8≤x<10,10≤x<12,12≤x<14,14≤x≤16):b.甲城市邮政企业4月份收入的数据在10≤x<12这一组的是:10.010.010.110.911.411.511.611.8c.甲、乙两座城市邮政企业4月份收入的数据的平均数、中位数如下:平均数中位数甲城市10.8m乙城市11.011.5根据以上信息,回答下列问题:第41页(共41页),(1)写出表中m的值;(2)在甲城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p1.在乙城市抽取的邮政企业中,记4月份收入高于它们的平均收入的邮政企业的个数为p2.比较p1,p2的大小,并说明理由;(3)若乙城市共有200家邮政企业,估计乙城市的邮政企业4月份的总收入(直接写出结果).26.在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.(1)若m=3,n=15,求该抛物线的对称轴;(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.27.如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.28.在平面直角坐标系xOy中,⊙O的半径为1.对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,C3的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O的以点A为中心的“关联线段”是  ;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA的最小值和最大值,以及相应的BC长.第41页(共41页),声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2021/6/257:42:04;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第41页(共41页)

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-03-06 15:09:59 页数:41
价格:¥10 大小:924.56 KB
文章作者:180****6173

推荐特供

MORE