2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷一、选择题(每小题3分,共36分.)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的个数有( )A.1个B.2个C.3个D.4个2.(3分)下列运算正确的是( )A.(a+b)(a﹣2b)=a2﹣2b2B.(a﹣)2=a2﹣C.﹣2(3a﹣1)=﹣6a+1D.(a+3)(a﹣3)=a2﹣93.(3分)如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A.B.C.D.5.(3分)一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是( )A.B.或5C.或D.56.(3分)如图,在△ABC中,sinB=,tanC=2,AB=3,则AC的长为( )A.B.C.D.27.(3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB第32页(共32页),的度数是( )A.22.5°B.30°C.45°D.60°8.(3分)若是二元一次方程组的解,则x+2y的算术平方根为( )A.3B.3,﹣3C.D.,﹣9.(3分)如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,2),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为( )A.(﹣2,﹣2)或(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)或(2,2)10.(3分)若关于x的分式方程=有正整数解,则整数m的值是( )A.3B.5C.3或5D.3或411.(3分)如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为( )A.B.2C.4D.812.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:第32页(共32页),①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是( )A.①②④⑤B.①②④C.①④⑤D.③④⑤二、选择题:(每小题3分,共24分.)13.(3分)一周时间有604800秒,604800用科学记数法表示为 .14.(3分)图,在四边形ABCD中,AD∥BC,在不添加任何辅助线的情况下,请你添加一个条件 ,使四边形ABCD是平行四边形(填一个即可).15.(3分)在函数y=中,自变量x的取值范围是 .16.(3分)“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是 元.17.(3分)将抛物线y=(x﹣1)2﹣5关于y轴对称,再向右平移3个单位长度后顶点的坐标是 .18.(3分)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是 个.19.(3分)在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP= .20.(3分)如图,正方形ABCD中,点E在边AD上,点F在边CD上,若∠BEF=∠第32页(共32页),EBC,AB=3AE,则下列结论:①DF=FC;②AE+DF=EF;③∠BFE=∠BFC;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC;⑥DF:DE:EF=3:4:5;⑦BF:EF=3:5.其中结论正确的序号有 .三、解答题:(共60分.)21.(5分)先化简,再求值:﹣÷,其中x=1﹣2tan45°.22.(6分)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.23.(6分)等腰三角形ABC中,AB=AC=4,∠BAC=45°,以AC为腰作等腰直角三角形ACD,∠CAD为90°,请画出图形,并直接写出点B到CD的距离.24.(7分)为了解本校学生对新闻(A)、体育(B)、动画(C)、娱乐(D)、戏曲(E第32页(共32页),)五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查,并根据调查结果绘制了两幅不完整的统计图,请根据统计图解答下列问题:(1)本次接受问卷调查的学生有 名;(2)补全条形统计图;(3)扇形统计图中,B类节目所对应的扇形圆心角的度数为 度;(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生数.25.(8分)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.26.(8分)△ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180°;(1)如图①,求证AD+BC=BE;(2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;第32页(共32页),(3)若BE⊥BC,tan∠BCD=,CD=10,则AD= .27.(10分)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.28.(10分)如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2﹣9x+20=0的两个根(OA<AB),tan∠OCB=.(1)求点B,C的坐标;(2)P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB上的点O′处,双曲线y=的一个分支过点O′.求k的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O′,Q,M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.第32页(共32页),第32页(共32页),2020年黑龙江省牡丹江市朝鲜族学校中考数学试卷参考答案与试题解析一、选择题(每小题3分,共36分.)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的个数有( )A.1个B.2个C.3个D.4个【解答】解:既是轴对称图形,又是中心对称图形的图形是第一个图形和第三个图形,共2个,故选:B.2.(3分)下列运算正确的是( )A.(a+b)(a﹣2b)=a2﹣2b2B.(a﹣)2=a2﹣C.﹣2(3a﹣1)=﹣6a+1D.(a+3)(a﹣3)=a2﹣9【解答】解:A.(a+b)(a﹣2b)=a2﹣2ab+ab﹣2b2=a2﹣ab﹣2b2,选项错误;B.(a﹣)2=a2﹣a+,选项错误;C.﹣2(3a﹣1)=﹣6a+2,选项错误;D.(a+3)(a﹣3)=a2﹣9,选项正确.故选:D.3.(3分)如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.【解答】解:从正面看去,一共三列,左边有1竖列,中间有2竖列,右边是1竖列,主视图是.故选:A.第32页(共32页),4.(3分)现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同,从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是( )A.B.C.D.【解答】解:用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中“两球颜色相同”的有4种,∴P(两球颜色相同)=.故选:B.5.(3分)一组数据4,4,x,8,8有唯一的众数,则这组数据的平均数是( )A.B.或5C.或D.5【解答】解:因为一组数据4,4,x,8,8有唯一的众数,所以x=4或x=8,当x=4时,==,当x=8时,==,故选:C.6.(3分)如图,在△ABC中,sinB=,tanC=2,AB=3,则AC的长为( )A.B.C.D.2【解答】解:过A作AD⊥BC于D,则∠ADC=∠ADB=90°,第32页(共32页),∵tanC=2=,sinB==,∴AD=2DC,AB=3AD,∵AB=3,∴AD=1,DC=,在Rt△ADC中,由勾股定理得:AC===,故选:B.7.(3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是( )A.22.5°B.30°C.45°D.60°【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.8.(3分)若是二元一次方程组的解,则x+2y的算术平方根为( )A.3B.3,﹣3C.D.,﹣第32页(共32页),【解答】解:把代入方程组得:,①+②得:5x=7,解得:x=,把x=代入②得:y=,∴x+2y=+=3,则3的算术平方根为.故选:C.9.(3分)如图,在菱形OABC中,点B在x轴上,点A的坐标为(2,2),将菱形绕点O旋转,当点A落在x轴上时,点C的对应点的坐标为( )A.(﹣2,﹣2)或(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)或(2,2)【解答】解:∵菱形OABC中,点B在x轴上,点A的坐标为(2,2),∴AO==4,OB=4,∴菱形的边长为4,△AOB是等边三角形,分两种情况讨论:如图所示,当点A在x轴正半轴上时,过C作CD⊥AO于D,则OD=CO=2,CD=,∴点C的坐标为(﹣2,﹣2);第32页(共32页),如图所示,当点A在x轴负半轴上时,过C作CD⊥AO于D,则OD=CO=2,CD=,∴点C的坐标为(2,2);综上所述,点C的对应点的坐标为(﹣2,﹣2)或(2,2),故选:D.10.(3分)若关于x的分式方程=有正整数解,则整数m的值是( )A.3B.5C.3或5D.3或4【解答】解:解分式方程,得x=,经检验,x=是分式方程的解,因为分式方程有正整数解,则整数m的值是3或4.故选:D.11.(3分)如图,A,B是双曲线y=上的两个点,过点A作AC⊥x轴,交OB于点D,垂足为点C.若△ODC的面积为1,D为OB的中点,则k的值为( )第32页(共32页),A.B.2C.4D.8【解答】解:过点B作BE⊥x轴于点E,则S△BOE=k.∵D为OB的中点,CD∥BE,∴CD是△OBE的中位线,CD=BE,∴△ODC∽△OBE,∴=()2=,∴S△ODC=S△BOE=k=1,∴k=8.故选:D.12.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0).下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(﹣,y1),(,y2)是抛物线上的两点,则y1<y2;⑤b>m(am+b)(其中m≠).其中说法正确的是( )第32页(共32页),A.①②④⑤B.①②④C.①④⑤D.③④⑤【解答】解:①∵抛物线开口向下,∴a<0,∵抛物线对称轴为x=﹣=,∴b=﹣a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;②∵对称轴为x=,且经过点(2,0),∴抛物线与x轴的另一个交点为(﹣1,0),∴=﹣1×2=﹣2,∴c=﹣2a,∴﹣2b+c=2a﹣2a=0﹣所以②正确;③∵抛物线经过(2,0),∴当x=2时,y=0,∴4a+2b+c=0,所以③错误;④∵点(﹣,y1)离对称轴要比点(,y2)离对称轴远,∴y1<y2,所以④正确;⑤∵抛物线的对称轴x=,第32页(共32页),∴当x=时,y有最大值,∴a+b+c>am2+bm+c(其中m≠).∵a=﹣b,∴b>m(am+b)(其中m≠),所以⑤正确.所以其中说法正确的是①②④⑤.故选:A.二、选择题:(每小题3分,共24分.)13.(3分)一周时间有604800秒,604800用科学记数法表示为 6.048×105 .【解答】解:将604800用科学记数法表示为6.048×105,故答案是:6.048×105.14.(3分)图,在四边形ABCD中,AD∥BC,在不添加任何辅助线的情况下,请你添加一个条件 AB∥CD(答案不唯一) ,使四边形ABCD是平行四边形(填一个即可).【解答】解:根据平行四边形的判定,可再添加一个条件:AB∥CD.故答案为:AB∥CD(答案不唯一).15.(3分)在函数y=中,自变量x的取值范围是 x>0.5 .【解答】解:根据题意得:2x﹣1>0,解得:x>0.5.故答案为:x>0.5.16.(3分)“元旦”期间,某商店单价为130元的书包按八折出售可获利30%,则该书包的进价是 80 元.【解答】解:设该书包的进价为x元,根据题意得:130×80%﹣x=30%x,整理得:1.3x=104,解得:x=80,则该书包的进价是80元.第32页(共32页),故答案为:80.17.(3分)将抛物线y=(x﹣1)2﹣5关于y轴对称,再向右平移3个单位长度后顶点的坐标是 (2,﹣5) .【解答】解:∵抛物线y=(x﹣1)2﹣5的顶点坐标是(1,﹣5),将抛物线y=(x﹣1)2﹣5关于y轴对称,∴顶点坐标是(﹣1,﹣5),∴再向右平移3个单位长度后的抛物线的顶点坐标为(2,﹣5).故答案为:(2,﹣5).18.(3分)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是 92 个.【解答】解:因为第1个图形中一共有1×(1+1)+2=4个圆,第2个图形中一共有2×(2+1)+2=8个圆,第3个图形中一共有3×(3+1)+2=14个圆,第4个图形中一共有4×(4+1)+2=22个圆;可得第n个图形中圆的个数是n(n+1)+2;所以第9个图形中圆的个数9×(9+1)+2=92.故答案为:92.19.(3分)在半径为的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP= 或或 .【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,则AE=BE=AB=2,DF=CF=CD=2,如图1,第32页(共32页),在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC==;如图2,同理:S△APC==;如图3,同理:S△APC==;故答案为:或或.20.(3分)如图,正方形ABCD中,点E在边AD上,点F在边CD上,若∠BEF=∠第32页(共32页),EBC,AB=3AE,则下列结论:①DF=FC;②AE+DF=EF;③∠BFE=∠BFC;④∠ABE+∠CBF=45°;⑤∠DEF+∠CBF=∠BFC;⑥DF:DE:EF=3:4:5;⑦BF:EF=3:5.其中结论正确的序号有 ①②③④⑤⑥⑦ .【解答】解:如图,过点B作BH⊥EF于H.∵四边形ABCD是正方形,∴∠A=∠C=∠D=∠ABC=90°,AB=AD=CD=BC,AD∥CB,∴∠AEB=∠EBC,∵∠FEB=∠EBC,∴∠AEB=∠BEF,∵BA⊥AE,BH⊥EF,∴AB=BH=BC,∵∠A=∠BHE=∠BHF=∠C=90°,BE=BE,BF=BF,∴Rt△ABE≌Rt△HBE(HL),Rt△BFH≌Rt△BFC(HL),∴AE=EH,FH=CF,∠BFE=∠BFC,故③正确,∴AE+CF=EH+HF=EF,∴∠ABE=∠HBE,∠FBH=∠FBC,∴∠ABE+∠CBF=45°,故④正确,∵∠DEF+∠AEH=180°,∠AEH+∠ABH=180°,∴∠DEF=∠ABH,第32页(共32页),∴∠DEF+∠FBC=∠ABH+∠FBH=∠ABF,∵AB∥CD,∴∠ABF=∠BFC,∴∠DEF+∠CBF=∠BFC,故⑤正确,∵AB=3AE,∴可以假设AE=a,则AB=AD=CD=3a,DE=2a,设DF=x,则FH=CF=3a﹣x,EF=a+3a﹣x=4a﹣x,∵EF2=DE2+DF2,∴(4a﹣x)2=(2a)2+x2解得x=a,∴DF=CF,故①正确,∴AE+DF=EF,故②正确,∴DF=a,DE=2a,EF=a,∴DF:DE:EF=3:4:5,故⑥正确,∵BF===a,∴BF+EF=a:a=3:5,故⑦正确.故答案为①②③④⑤⑥⑦.三、解答题:(共60分.)21.(5分)先化简,再求值:﹣÷,其中x=1﹣2tan45°.【解答】解:原式=﹣•=﹣第32页(共32页),==﹣,当x=1﹣2tan45°=1﹣2=﹣1,原式=﹣=﹣.22.(6分)已知抛物线y=a(x﹣2)2+c经过点A(﹣2,0)和点C(0,),与x轴交于另一点B,顶点为D.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如图,点E,F分别在线段AB,BD上(点E不与点A,B重合),且∠DEF=∠DAB,DE=EF,直接写出线段BE的长.【解答】解:(1)将点A(﹣2,0),C(0,)代入y=a(x﹣2)2+c,得:,解得:,∴抛物线的解析式为y=﹣(x﹣2)2+3,即y=﹣x2+x+;∴顶点D的坐标为(2,3);(2)当y=0时,﹣(x﹣2)2+3=0,解得:x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),∵∠DEB=∠DEF+∠BEF=∠DAB+∠ADE,∠DEF=∠DAB,∴∠ADE=∠BEF,∵AD==5,BD==5,第32页(共32页),∴AD=BD,∴∠DAE=∠EBF,∵DE=EF,∴△ADE≌△BEF(AAS),∴BE=AD=5.23.(6分)等腰三角形ABC中,AB=AC=4,∠BAC=45°,以AC为腰作等腰直角三角形ACD,∠CAD为90°,请画出图形,并直接写出点B到CD的距离.【解答】解:本题有两种情况:如图1,过点A作AE⊥CD于点E,∵△ACD等腰直角三角形,∴∠ACD=45°,∴∠ACD=∠BAC,∴AB∥CD,∴点B到CD的距离等于点A到CD的距离,∴AE=AC•sin45°=4×=2,∴点B到CD的距离为:2;如图2,AB、CD交于点E,∵△ACD等腰直角三角形,∴∠ACD=∠BAC=45°,∴∠AEC=90°,∴AE=AC•sin45°=4×=2,∴BE=AB﹣AE=4﹣2.第32页(共32页),∴点B到CD的距离为4﹣2.综上所述:点B到CD的距离为2或4﹣2.24.(7分)为了解本校学生对新闻(A)、体育(B)、动画(C)、娱乐(D)、戏曲(E)五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查,并根据调查结果绘制了两幅不完整的统计图,请根据统计图解答下列问题:(1)本次接受问卷调查的学生有 100 名;(2)补全条形统计图;(3)扇形统计图中,B类节目所对应的扇形圆心角的度数为 72 度;(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生数.【解答】解:(1)本次接受问卷调查的学生有:36÷36%═100(名),故答案为:100;(2)喜爱C类的有:100﹣8﹣20﹣36﹣6=30(名),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:360°×=72°,故答案为:72;(4)2000×=160(名),答:估计该校最喜爱新闻节目的学生有160名.第32页(共32页),25.(8分)A,B两城市之间有一条公路相连,公路中途穿过C市,甲车从A市到B市,乙车从C市到A市,甲车的速度比乙车的速度慢20千米/时,两车距离C市的路程y(单位:千米)与驶的时间t(单位:小时)的函数图象如图所示,结合图象信息,解答下列问题:(1)甲车的速度是 60 千米/时,在图中括号内填入正确的数;(2)求图象中线段MN所在直线的函数解析式,不需要写出自变量的取值范围;(3)直接写出甲车出发后几小时,两车距C市的路程之和是460千米.【解答】解:(1)由题意,甲的速度为=60千米/小时.乙的速度为80千米/小时,=6(小时),4+6=10(小时),∴图中括号内的数为10.故答案为:60.(2)设线段MN所在直线的解析式为y=kt+b(k≠0).把点M(4,0),N(10,480)代入y=kt+b,得:,解得:.第32页(共32页),∴线段MN所在直线的函数解析式为y=80t﹣320.(3)(480﹣460)=20,20÷60=(小时),或60t﹣480+80(t﹣4)=460,解得t=9,答:甲车出发小时或9小时时,两车距C市的路程之和是460千米.26.(8分)△ABC中,点D在直线AB上.点E在平面内,点F在BC的延长线上,∠E=∠BDC,AE=CD,∠EAB+∠DCF=180°;(1)如图①,求证AD+BC=BE;(2)如图②、图③,请分别写出线段AD,BC,BE之间的数量关系,不需要证明;(3)若BE⊥BC,tan∠BCD=,CD=10,则AD= 14﹣6或2+6 .【解答】解:(1)证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴AD+BC=AD+AB=BD=BE;(2)①图②结论:BC﹣AD=BE,证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,第32页(共32页),∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB,∴BE=BD,AB=BC,∴BC﹣AD=AB﹣AD=BD=BE;②图③结论:AD﹣BC=BE;证明:∵∠EAB+∠DCF=180°,∠BCD+∠DCF=180°,∴∠EAB=∠BCD,∵∠E=∠BDC,AE=CD,∴△EAB≌△DCB(ASA),∴BE=BD,AB=BC,∴AD﹣BC=AD﹣AB=BD=BE;(3)①如图2,过点D作DG⊥BC于G,在Rt△CGD中,tan∠BCD=,∴,设DG=3x,CG=4x,根据勾股定理得,DG2+CG2=CD2,∴9x2+16x2=100,∴x=2(舍去负值),∴CG=8,DG=6,由(2)①知,△EAB≌△DCB,∴∠ABE=∠CBD,∵BE⊥BC,∴∠CBE=90°,∴∠CBD=45°=∠BDG,∴BG=DG=6,BD=6,∴BC=BG+CG=14,第32页(共32页),由(2)①知,BC﹣AD=BD,∴AD=BC﹣BD=14﹣6;②如图3,过点D作DG⊥BC于G,同①的方法得,CF=8,BG=DG=6,BD=6,∴BC=CG﹣CG=2,由(2)②知,AD﹣BC=BD,∴AD=BC+BD=2+6;故答案为:14﹣6或2+6.27.(10分)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40000元购进A型号电脑的数量与用30000元购进B型号电脑的数量相同,请解答下列问题:(1)A,B型号电脑每台进价各是多少元?(2)若每台A型号电脑售价为2500元,每台B型号电脑售价为1800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?第32页(共32页),(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.【解答】解:(1)设每台A型号电脑进价为a元,每台B型号电脑进价为(a﹣500)元,由题意,得,解得:a=2000,经检验a=2000是原方程的解,且符合题意.∴2000﹣500=1500(元).答:每台A型号电脑进价为2000元,每台B型号电脑进价为1500元;(2)由题意,得y=(2500﹣2000)x+(1800﹣1500)(20﹣x)=200x+6000,∵2000x+1500(20﹣x)≤36000,∴x≤12.又∵x≥10,∴10≤x≤12,∵x是整数,∴x=10,11,12,∴有三种方案;(3)∵y=200x+6000是一次函数,y随x的增大而增大,∴当x=12时,y有最大值=12×200+6000=8400元,设再次购买的A型电脑b台,B型电脑c台,∴2000b+1500c≤8400,且b,c为非负整数,∴b=0,c=5或b=1,c=4或b=2,c=2或b=3,c=1或b=4,c=0,∴捐赠A,B型号电脑总数最多是5台.28.(10分)如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB∥OC,线段OA,AB的长分别是方程x2﹣9x+20=0的两个根(OA<AB),tan∠OCB=.(1)求点B,C的坐标;(2)P为OA上一点,Q为OC上一点,OQ=5,将△POQ翻折,使点O落在AB上的点O′处,双曲线y=的一个分支过点O′.求k的值;(3)在(2)的条件下,M为坐标轴上一点,在平面内是否存在点N,使以O′,Q,第32页(共32页),M,N为顶点四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.【解答】解:(1)解方程:x2﹣9x+20=0,(x﹣4)(x﹣5)=0,得x1=4,x2=5,∵OA<AB,∴OA=4,AB=5,如图1,过点B作BD⊥OC于点D,∵tan∠OCB=,BD=OA=4,∴CD=3,∵OD=AB=5,∴OC=8,∴点B的坐标为(5,4),点C的坐标为(8,0);(2)如图2,∵AB∥OC,OQ=AB=5,∠AOQ=90°,第32页(共32页),∴四边形AOQB为矩形.∴BQ=OA=4,由翻折,得OQ=O'Q=5,∴O'B===3,∴AO'=2,∴O'(2,4),∴k=2×4=8;(3)存在.分四种情况:①如图3,M在x轴的正半轴上,四边形NO'MQ是矩形,此时N与B重合,则N(5,4);②如图4,M在x轴的负半轴上,四边形NMO'Q是矩形,过O'作O'D⊥x轴于D,过N作NH⊥x轴于H,第32页(共32页),∵四边形NMO'Q是矩形,∴MN=O'Q=5,MN∥O'Q,∴∠NMO=∠DQO',∵∠NHM=∠QDO'=90°,∴△NHM≌△O'DQ(AAS),∴NH=O'D=4,DQ=MH=3,由(2)知:AO'=2,设PO=x,则O'P=x,AP=4﹣x,在Rt△APO'中,由勾股定理得:AP2+AO'2=O'P2,即x2=22+(4﹣x)2,解得:x=,∴P(0,),设PQ'的解析式为:y=kx+b,则,解得:,∴PQ'的解析式为:y=x+,当y=0时,x+=0,∴x=﹣,第32页(共32页),∴OM=,∴OH=OM﹣MH=﹣3=,∴N(﹣,﹣4);③如图5,M在y轴的正半轴上,四边形MNQO'是矩形,由②知:M(0,),O'(2,4),Q(5,0),∴N(3,﹣);④如图6,M在y轴的负半轴上,四边形MNO'Q是矩形,过O'作O'D⊥x轴于D,∵∠MOQ=∠QDO',∠OMQ=∠DQO',∴△MOQ∽△QDO',∴,即,∴OM=,第32页(共32页),∴M(0,﹣),∵O'(2,4),Q(5,0),∴N(﹣3,),综上,点N的坐标为:N(5,4)或(﹣,﹣4)或(3,﹣)或(﹣3,).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2020/7/319:51:28;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557第32页(共32页)
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)