首页

高中数学人教A版选修4-5第5.4.1柯西不等式教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

5.4.1柯西不等式目的要求:重点难点:教学过程:一、引入:除了前面已经介绍的贝努利不等式外,本节还将讨论柯西不等式、排序不等式、平均不等式等著名不等式。这些不等式不仅形式优美、应用广泛,而且也是进一步学习数学的重要工具。1、什么是柯西不等式:定理1:(柯西不等式的代数形式)设均为实数,则,其中等号当且仅当时成立。证明:几何意义:设,为平面上以原点O为起点的两个非零向量,它们的终点分别为A(),B(),那么它们的数量积为,而,,\n所以柯西不等式的几何意义就是:,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。2、定理2:(柯西不等式的向量形式)设,为平面上的两个向量,则,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。3、定理3:(三角形不等式)设为任意实数,则:分析:思考:三角形不等式中等号成立的条件是什么?4、定理4:(柯西不等式的推广形式):设为大于1的自然数,(1,2,…,)为任意实数,则:,其中等号当且仅当时成立(当时,约定,1,2,…,)。证明:构造二次函数:即构造了一个二次函数:\n由于对任意实数,恒成立,则其,即:,即:,等号当且仅当,即等号当且仅当时成立(当时,约定,1,2,…,)。如果()全为0,结论显然成立。柯西不等式有两个很好的变式:变式1设,等号成立当且仅当变式2设ai,bi同号且不为0(i=1,2,…,n),则:,等号成立当且仅当。二、典型例题:\n例1、已知,,求证:。例2、设,求证:。例3、设为平面上的向量,则。例4、已知均为正数,且,求证:。方法1:方法2:(应用柯西不等式)\n例5:已知,,…,为实数,求证:。分析:推论:在个实数,,…,的和为定值为S时,它们的平方和不小于,当且仅当时,平方和取最小值。三、小结:四、练习:1、设x1,x2,…,xn>0,则2、设(i=1,2,…,n)且求证:.3、设a为实常数,试求函数(x∈R\n)的最大值.4、求函数在上的最大值,其中a,b为正常数.五、作业:1、已知:,,证明:。提示:本题可用三角换元、柯西不等式等方法来证明。2、若,且=,=,求证:都是不大于的非负实数。证明:由代入=可得∵ ∴△≥0即化简可得:∵    ∴ 同理可得: ,\n由此可见,在平常的解题中,一些证明定理、公理、不等式的方法都可以为我们所用;只要能灵活运用,就能收到事半功倍的效果。3、设a﹐b为不相等的正數,试证:(a+b)(a3+b3)>(a2+b2)2。4、设x,y,z为正实数,且x+y+z=10,求的最小值。5、设x,y,zÎR,求的最大值。6、ΔABC之三边长为4,5,6,P为三角形內部一点P,P到三边的距离分別为x,y,z,求x2+y2+z2的最小值。解:s=DABC面积=且DABC=DPAB+DPBC+DPACÞÞ4x+5y+6z=由柯西不等式(4x+5y+6z)2³(x2+y2+z2)(42+52+62)Þ³(x2+y2+z2)´77\nÞx2+y2+z2³7、设三个正实数a,b,c满足,求证:a,b,c一定是某三角形的三边长。8、求证个正实数a1,a2,…,an满足9、已知,且求证:。10、设,求证:。11、设,且x+2y+3z=36,求的最小值.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 - 数学
发布时间:2022-08-23 18:00:04 页数:8
价格:¥3 大小:136.27 KB
文章作者:182****8598

推荐特供

MORE