首页

第3章图形的相似3.5相似三角形的应用课件(湘教版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/33

2/33

3/33

4/33

剩余29页未读,查看更多内容需下载

第3章图形的相似3.5相似三角形的应用\n学习目标1.能够利用相似三角形的知识,求出不能直接测量的物体的高度和宽度.(重点)2.进一步了解数学建模思想,能够将实际问题转化为相似三角形的数学模型,提高分析问题、解决问题的能力.(难点)\n乐山大佛导入新课图片引入\n世界上最高的树——红杉\n世界上最宽的河——亚马逊河怎样测量河宽?\n利用相似三角形可以解决一些不能直接测量的物体的高度及两物之间的距离问题.\n问题:如图,A,B两点分别位于一个池塘的两端,小张想测量出A,B间的距离,但由于受条件限制无法直接测量,你能帮他想出一个可行的测量办法吗?AB如图,在池塘外取一点C,使它可以直接看到A,B两点,连接并延长AC,BC,在AC的延长线上取一点D,在BC的延长线上取一点E,使测量出DE的长度后,就可以由相似三角形的有关知识求出A,B间的距离了.CDF讲授新课利用相似三角形测量宽度\n例1如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.已知测得QS=45m,ST=90m,QR=60m,请根据这些数据,计算河宽PQ.PRQSbTa\nPQ×90=(PQ+45)×60.解得PQ=90.因此,河宽大约为90m.解:∵∠PQR=∠PST=90°,∠P=∠P,∴△PQR∽△PST.PRQSbTa∴,即,还有其他构造相似三角形求河宽的方法吗?45m90m60m\n例2如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.此时如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.EADCB60m50m120m\n解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△ECD.∴,即,解得AB=100.因此,两岸间的大致距离为100m.EADCB60m50m120m\n测量如河宽等不易直接测量的物体的宽度,常构造相似三角形求解.归纳:\n据传说,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度.利用相似三角形测量高度\n例3如图,木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO.解:太阳光是平行的光线,因此∠BAO=∠EDF.又∠AOB=∠DFE=90°,∴△ABO∽△DEF.∴,∴=134(m).因此金字塔的高度为134m.\n表达式:物1高:物2高=影1长:影2长测高方法一:测量不能到达顶部的物体的高度,可以用“在同一时刻物高与影长成正比例”的原理解决.归纳:\n例4:如图,小明为了测量一棵树CD的高度,他在距树24m处立了一根高为2m的标杆EF,然后小明前后调整自己的位置,当他与树相距27m的时候,他的眼睛、标杆的顶端和树的顶端在同一条直线上.已知小明的眼高1.6m,求树的高度.分析:人、树、标杆是相互平行的,添加辅助线,过点A作AN∥BD交ID于N,交EF于M,则可得△AEM∽△ACN.AECDFBN\nAECDFBN解:过点A作AN∥BD交CD于N,交EF于M,因为人、标杆、树都垂直于地面,∴∠ABF=∠EFD=∠CDF=90°,∴AB∥EF∥CD,∴∠EMA=∠CNA.∵∠EAM=∠CAN,∴△AEM∽△ACN,∴.∵AB=1.6m,EF=2m,BD=27m,FD=24m,∴,∴CN=3.6(m),∴CD=3.6+1.6=5.2(m).故树的高度为5.2m.\n1.如图,要测量旗杆AB的高度,可在地面上竖一根竹竿DE,测量出DE的长以及DE和AB在同一时刻下地面上的影长即可,则下面能用来求AB长的等式是()A.B.C.D.C练一练\n2.如图,九年级某班数学兴趣小组的同学想利用所学数学知识测量学校旗杆的高度,当身高1.6米的楚阳同学站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,同一时刻,其他成员测得AC=2米,AB=10米,则旗杆的高度是______米.8\nAFEBO┐┐还可以有其他测量方法吗?OBEF=OAAF△ABO∽△AEFOB=OA·EFAF平面镜想一想:\n测高方法二:测量不能到达顶部的物体的高度,也可以用“利用镜子的反射测量高度”的原理解决.\n如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙的顶端C处,已知AB=2米,且测得BP=3米,DP=12米,那么该古城墙的高度是()A.6米B.8米C.18米D.24米B试一试:\n例5如图,左、右并排的两棵大树的高分别是AB=8m和CD=12m,两树底部的距离BD=5m,一个人估计自己眼睛距离地面1.6m,她沿着正对这两棵树的一条水平直路l从左向右前进,当她与左边较低的树的距离小于多少时,就看不到右边较高的树的顶端C了?利用相似解决有遮挡物问题\n分析:如图,设观察者眼睛的位置(视点)为点F,画出观察者的水平视线FG,它交AB,CD于点H,K.视线FA,FG的夹角∠AFH是观察点A的仰角.类似地,∠CFK是观察点C时的仰角,由于树的遮挡,区域Ⅰ和Ⅱ都在观察者看不到的区域(盲区)之内.再往前走就根本看不到C点了.\n由此可知,如果观察者继续前进,当她与左边的树的距离小于8m时,由于这棵树的遮挡,就看不到右边树的顶端C.解:如图,假设观察者从左向右走到点E时,她的眼睛的位置点E与两棵树的顶端点A,C恰在一条直线上.∵AB⊥l,CD⊥l,∴AB∥CD.∴△AEH∽△CEK.∴,即解得EH=8.\n1.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为()A.45米B.40米C.90米D.80米当堂练习2.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5mB.0.55mC.0.6mD.2.2mAA\n3.如图,为了测量水塘边A、B两点之间的距离,在可以看到A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB.若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离为m.ABEDC20\n4.如图所示,有点光源S在平面镜上面,若在P点看到点光源的反射光线,并测得AB=10cm,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离SA的长度为.12cm\n5.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.ABCDGEF\nABCDGEF解:由题意可得:△DEF∽△DCA,∵DE=0.5米,EF=0.25米,DG=1.5米,DC=20米,则解得:AC=10,故AB=AC+BC=10+1.5=11.5(m).答:旗杆的高度为11.5m.∴\n6.如图,某一时刻,旗杆AB的影子的一部分在地面上,另一部分在建筑物的墙面上.小明测得旗杆AB在地面上的影长BC为9.6m,在墙面上的影长CD为2m.同一时刻,小明又测得竖立于地面长1m的标杆的影长为1.2m.请帮助小明求出旗杆的高度.ABCD\nE解:如图:过点D作DE∥BC,交AB于点E,∴DE=CB=9.6m,BE=CD=2m,∵在同一时刻物高与影长成正比例,∴EA:ED=1:1.2,∴AE=8m,∴AB=AE+EB=8+2=10(m),∴学校旗杆的高度为10m.ABCD\n相似三角形的应用举例利用相似三角形测量高度课堂小结利用相似三角形测量宽度利用相似解决有遮挡物问题

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-16 18:00:07 页数:33
价格:¥3 大小:1.09 MB
文章作者:随遇而安

推荐特供

MORE