首页

2022年人教版九年级数学上册教案:第1课时 实际问题与一元二次方程(1)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

21.3实际问题与一元二次方程第1课时实际问题与一元二次方程(1)【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.一、情境导入,初步认识问题在上一节的习题21.2中,我们遇见过一些用列方程来求解的实际应用问题,你能说说列方程解应用问题的步骤是怎样的?学生在相互讨论交流中可得出结论为:①审题;②设未知数;③列方程;④解方程;⑤答.【教学说明】让学生在回顾解实际问题过程中的思路方法,为进一步学习新的问题作好铺垫,导入新课.二、思考探究,获取新知探究1有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均1个人传染了几个人?,【教学说明】教师展示出问题后,先让学生仔细分析题意,尝试着寻求解决问题的方法.为了让学生更好地理解题意,不妨设置如下几个问题:(1)若设平均每轮传染中一个人可传染x个人,则第一轮传染后共有人患了流感;(2)第二轮传染后,被传染的人数为人,故第二轮传染后共人患了流感.最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,则第一轮传染后共有(1+x)人患了流感,第二轮传染后共[1+x+(1+x)·x]人患流感,依题意可列方程为1+x+(1+x)·x=121方程可整理为(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.想一想(1)照上述传染速度,三轮传染后患流感的人数共有多少人?(2)通过对上述问题的探究,你对类似的传播问题中的数量关系,有新认识吗?【教学说明】(1)的问题学生可通过前面的分析获得结论,进一步加深对传播问题中数量关系的理解和认识;(2)中问题应让学生相互交流,总结规律.探究2两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本为6000元.随着生产技术的进步,现在生产1t甲种药品的成本为3000元,生产1t乙种药品的成本为3600元.哪种药品成本的年平均下降率较大?思考(1)甲种药品成本的年平均下降额与乙种药品的年平均下降额分别是多少?它与年平均下降率是否是一回事?(2)若设甲种药品的年平均下降率为x,则第一年后的成本为元,第二年后的成本为元,你能列出相应的方程并求出问题的解吗?对于乙种药品呢?【教学说明】思考(1)旨在让学生感受成本下降问题中,成本下降额和成本下降率这两个接近而不同的概念,前者表示绝对变化量,单位是元,后者表示相对变化量,是表示比率的数字,从而全面比较对象的变化状况;思考(2)则进一步让学生感受到两个时间段的平均变化率,如经济增长率、人口增长率等,设平均变化率为x,则有变化前数量×(1+x)2,=两年后的数量,由此可得到一元二次方程的数学模型,并确定方程和问题的解,教学过程中,教师应引导学生积极思考,寻求出实际问题中所蕴含的等量关系,让学生体会到寻找等量关系是解决问题的关键,最后师生共同完成解答过程.三、典例精析,掌握新知例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支?解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,解得x1=9,x2=-10(不合题意,应舍去),即每个支干长出9个小分支.例2某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少?解:设平均每次降息的百分率为a%,依题意可列方程为:2.25%(1-a%)2=1.98%解得a1≈6.19,a2≈193.81(不合题意,应舍去).即平均每次降息的百分率约为6.19%.【教学说明】让学生独立思考,自主探究,找出题目中的等量关系,并能构建合适的一元二次方程来解决问题,加深对知识的领悟,其中例2可借助计算器来帮助解决问题.教学时,教师在学生探究期间应巡视全场,帮助困难学生找出解决问题的思路方法,最后给出完整解答过程,培养学生良好的解题习惯.四、运用新知,深化理解1.一台电视机的成本价为a元,原销售价比成本价增加25%,因库存积压,两次降价处理,若每次降价的百分率为x%,则最后销售价应为.2.某养鸡场一只患禽流感的小鸡经过两天的传染后,使养鸡场共有169只小鸡感染禽流感,那么在每一天的传染中平均一只小鸡传染了几只小鸡?3.某校坚持对学生进行近视眼的防治,近视眼人数逐年减少.据统计,2013年和2012年的近视眼人数只占2011年人数的75%,这两年平均每年近视眼人数下降的百分率是多少?【教学说明】设置这几道题有利于学生进一步掌握一元二次方程应用题的解法,题目稍难,老师应巡视给予指导,然后共同完成.【答案】1.(1+25%)a·(1-x%)2元,2.设每一天的传染中平均一只小鸡传染了x只小鸡,由题意,得(1+x)+(1+x)·x=169,解得x1=12,x2=-14(不合题意,舍去),故每一天平均一只小鸡传染了12只小鸡.3.设平均每年的近视眼人数下降的百分率为x,2011年的近视眼人数为a人,由题意有(1-x)a+(1-x)2·a=75%a,解得x1=0.5,x2=2.5,显然x=2.5不合题意,应舍去,即平均每年近视眼人数下降的百分率为50%.五、师生互动,课堂小结通过这节课的学习,你对传播类和增长率(下降率)的应用问题的处理有哪些体会和收获?谈谈你的看法.【教学说明】教师可向学生提问,以进一步巩固列方程解应用题的方法和解题步骤,为后续学习作好铺垫.1.布置作业:从教材“习题21.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 - 数学
发布时间:2022-08-03 10:31:39 页数:4
价格:¥3 大小:144.50 KB
文章作者:U-60013

推荐特供

MORE