首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
三轮冲刺
>
2024年高考数学真题分类汇编07:解析几何
2024年高考数学真题分类汇编07:解析几何
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/24
2
/24
剩余22页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
解析几何一、单选题1.(2024·全国)已知曲线C:(),从C上任意一点P向x轴作垂线段,为垂足,则线段的中点M的轨迹方程为( )A.()B.()C.()D.()2.(2024·全国)已知双曲线的上、下焦点分别为,点在该双曲线上,则该双曲线的离心率为( )A.4B.3C.2D.3.(2024·全国)已知b是的等差中项,直线与圆交于两点,则的最小值为( )A.2B.3C.4D.4.(2024·北京)求圆的圆心到的距离( )A.B.2C.D.5.(2024·天津)双曲线的左、右焦点分别为是双曲线右支上一点,且直线的斜率为2.是面积为8的直角三角形,则双曲线的方程为( )A.B.C.D.二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C的一部分.已知C过坐标原点O.且C上的点满足横坐标大于,到点的距离与到定直线的距离之积为4,则( ) A.B.点在C上C.C在第一象限的点的纵坐标的最大值为1D.当点在C上时,7.(2024·全国)抛物线C:的准线为l,P为C上的动点,过P作的一条切线,Q为切点,过P作l的垂线,垂足为B,则( )A.l与相切B.当P,A,B三点共线时,C.当时,D.满足的点有且仅有2个三、填空题8.(2024·全国)设双曲线的左右焦点分别为,过作平行于轴的直线交C于A,B两点,若,则C的离心率为.9.(2024·北京)已知双曲线,则过且和双曲线只有一个交点的直线的斜率为.10.(2024·北京)已知抛物线,则焦点坐标为.11.(2024·天津)的圆心与抛物线的焦点重合,为两曲线的交点,则原点到直线的距离为.12.(2024·上海)已知抛物线上有一点到准线的距离为9,那么点到轴的距离为.四、解答题 13.(2024·全国)已知和为椭圆上两点.(1)求C的离心率;(2)若过P的直线交C于另一点B,且的面积为9,求的方程.14.(2024·全国)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意的正整数,.15.(2024·全国)设椭圆的右焦点为,点在上,且轴.(1)求的方程;(2)过点的直线与交于两点,为线段的中点,直线交直线于点,证明:轴.16.(2024·北京)已知椭圆方程C:,焦点和短轴端点构成边长为2的正方形,过的直线l与椭圆交于A,B,,连接AC交椭圆于D.(1)求椭圆方程和离心率;(2)若直线BD的斜率为0,求t.17.(2024·天津)已知椭圆椭圆的离心率.左顶点为,下顶点为是线段的中点,其中.(1)求椭圆方程.(2)过点的动直线与椭圆有两个交点.在轴上是否存在点使得恒成立.若存在求出这个点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线左右顶点分别为,过点的直线交双曲线于两点. (1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求的取值范围. 参考答案:1.A【分析】设点,由题意,根据中点的坐标表示可得,代入圆的方程即可求解.【解析】设点,则,因为为的中点,所以,即,又在圆上,所以,即,即点的轨迹方程为.故选:A2.C【分析】由焦点坐标可得焦距,结合双曲线定义计算可得,即可得离心率.【解析】由题意,、、,则,,,则,则.故选:C.3.C【分析】结合等差数列性质将代换,求出直线恒过的定点,采用数形结合法即可求解.【解析】因为成等差数列,所以,,代入直线方程得,即,令得,故直线恒过,设,圆化为标准方程得:,设圆心为,画出直线与圆的图形,由图可知,当时,最小,,此时. 故选:C4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得,即,则其圆心坐标为,则圆心到直线的距离为,故选:C.5.C【分析】可利用三边斜率问题与正弦定理,转化出三边比例,设,由面积公式求出,由勾股定理得出,结合第一定义再求出.【解析】如下图:由题可知,点必落在第四象限,,设,,由,求得,因为,所以,求得,即,,由正弦定理可得:,则由得,由得, 则,由双曲线第一定义可得:,,所以双曲线的方程为.故选:C6.ABD【分析】根据题设将原点代入曲线方程后可求,故可判断A的正误,结合曲线方程可判断B的正误,利用特例法可判断C的正误,将曲线方程化简后结合不等式的性质可判断D的正误.【解析】对于A:设曲线上的动点,则且,因为曲线过坐标原点,故,解得,故A正确.对于B:又曲线方程为,而,故.当时,,故在曲线上,故B正确.对于C:由曲线的方程可得,取,则,而,故此时,故在第一象限内点的纵坐标的最大值大于1,故C错误.对于D:当点在曲线上时,由C的分析可得,故,故D正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.7.ABD【分析】A选项,抛物线准线为,根据圆心到准线的距离来判断;B选项, 三点共线时,先求出的坐标,进而得出切线长;C选项,根据先算出的坐标,然后验证是否成立;D选项,根据抛物线的定义,,于是问题转化成的点的存在性问题,此时考察的中垂线和抛物线的交点个数即可,亦可直接设点坐标进行求解.【解析】A选项,抛物线的准线为,的圆心到直线的距离显然是,等于圆的半径,故准线和相切,A选项正确;B选项,三点共线时,即,则的纵坐标,由,得到,故,此时切线长,B选项正确;C选项,当时,,此时,故或,当时,,,,不满足;当时,,,,不满足;于是不成立,C选项错误;D选项,方法一:利用抛物线定义转化根据抛物线的定义,,这里,于是时点的存在性问题转化成时点的存在性问题,,中点,中垂线的斜率为,于是的中垂线方程为:,与抛物线联立可得,,即的中垂线和抛物线有两个交点,即存在两个点,使得,D选项正确.方法二:(设点直接求解) 设,由可得,又,又,根据两点间的距离公式,,整理得,,则关于的方程有两个解,即存在两个这样的点,D选项正确.故选:ABD8.【分析】由题意画出双曲线大致图象,求出,结合双曲线第一定义求出,即可得到的值,从而求出离心率.【解析】由题可知三点横坐标相等,设在第一象限,将代入得,即,故,,又,得,解得,代入得,故,即,所以.故答案为: 9.【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立与,解得,这表明满足题意的直线斜率一定存在,设所求直线斜率为,则过点且斜率为的直线方程为,联立,化简并整理得:,由题意得或,解得或无解,即,经检验,符合题意.故答案为:.10.【分析】形如的抛物线的焦点坐标为,由此即可得解.【解析】由题意抛物线的标准方程为,所以其焦点坐标为.故答案为:.11./【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求及的方程,从而可求原点到直线的距离.【解析】圆的圆心为,故即,由可得,故或(舍), 故,故直线即或,故原点到直线的距离为,故答案为:12.【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【解析】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.13.(1)(2)直线的方程为或.【分析】(1)代入两点得到关于的方程,解出即可;(2)方法一:以为底,求出三角形的高,即点到直线的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到点坐标,则得到直线的方程;方法二:同法一得到点到直线的距离,再设,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点到直线的距离,利用椭圆的参数方程即可求解;法四:首先验证直线斜率不存在的情况,再设直线,联立椭圆方程,得到点坐标,再利用点到直线距离公式即可;法五:首先考虑直线斜率不存在的情况,再设,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘表达面积即可.【解析】(1)由题意得,解得, 所以.(2)法一:,则直线的方程为,即,,由(1)知,设点到直线的距离为,则,则将直线沿着与垂直的方向平移单位即可,此时该平行线与椭圆的交点即为点,设该平行线的方程为:,则,解得或,当时,联立,解得或,即或,当时,此时,直线的方程为,即,当时,此时,直线的方程为,即,当时,联立得,,此时该直线与椭圆无交点.综上直线的方程为或.法二:同法一得到直线的方程为,点到直线的距离,设,则,解得或, 即或,以下同法一.法三:同法一得到直线的方程为,点到直线的距离,设,其中,则有,联立,解得或,即或,以下同法一;法四:当直线的斜率不存在时,此时,,符合题意,此时,直线的方程为,即,当线的斜率存在时,设直线的方程为,联立椭圆方程有,则,其中,即,解得或,,,令,则,则同法一得到直线的方程为,点到直线的距离,则,解得,此时,则得到此时,直线的方程为,即,综上直线的方程为或.法五:当的斜率不存在时,到距离,此时不满足条件. 当的斜率存在时,设,令,,消可得,,且,即,,到直线距离,或,均满足题意,或,即或.法六:当的斜率不存在时,到距离,此时不满足条件.当直线斜率存在时,设,设与轴的交点为,令,则,联立,则有,,其中,且,则,则,解的或,经代入判别式验证均满足题意.则直线为或,即或. 14.(1),(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.【解析】(1)由已知有,故的方程为.当时,过且斜率为的直线为,与联立得到.解得或,所以该直线与的不同于的交点为,该点显然在的左支上.故,从而,.(2)由于过且斜率为的直线为,与联立,得到方程 .展开即得,由于已经是直线和的公共点,故方程必有一根.从而根据韦达定理,另一根,相应的.所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.所以.这就得到,.所以.再由,就知道,所以数列是公比为的等比数列.(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)证明:.证毕,回到原题. 由于上一小问已经得到,,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有.而又有,,故利用前面已经证明的结论即得.这就表明的取值是与无关的定值,所以.方法二:由于上一小问已经得到,,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有 .这就得到,以及.两式相减,即得.移项得到.故.而,.所以和平行,这就得到,即.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.15.(1)(2)证明见解析【分析】(1)设,根据的坐标及轴可求基本量,故可求椭圆方程.(2)设,,,联立直线方程和椭圆方程,用的坐标表示,结合韦达定理化简前者可得,故可证轴. 【解析】(1)设,由题设有且,故,故,故,故椭圆方程为.(2)直线的斜率必定存在,设,,,由可得,故,故,又,而,故直线,故,所以,故,即轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为;(2)联立直线与圆锥曲线的方程,得到关于(或)的一元二次方程,注意的判断;(3)列出韦达定理; (4)将所求问题或题中的关系转化为、(或、)的形式;(5)代入韦达定理求解.16.(1)(2)【分析】(1)由题意得,进一步得,由此即可得解;(2)说明直线斜率存在,设,,联立椭圆方程,由韦达定理有,而,令,即可得解.【解析】(1)由题意,从而,所以椭圆方程为,离心率为;(2)显然直线斜率存在,否则重合,直线斜率不存在与题意不符,同样直线斜率不为0,否则直线与椭圆无交点,矛盾,从而设,,联立,化简并整理得,由题意,即应满足,所以,若直线斜率为0,由椭圆的对称性可设,所以,在直线方程中令, 得,所以,此时应满足,即应满足或,综上所述,满足题意,此时或.17.(1)(2)存在,使得恒成立.【分析】(1)根据椭圆的离心率和三角形的面积可求基本量,从而可得椭圆的标准方程.(2)设该直线方程为:,,联立直线方程和椭圆方程并消元,结合韦达定理和向量数量积的坐标运算可用表示,再根据可求的范围.【解析】(1)因为椭圆的离心率为,故,,其中为半焦距,所以,故,故,所以,,故椭圆方程为:.(2)若过点的动直线的斜率存在,则可设该直线方程为:,设,由可得, 故且而,故,因为恒成立,故,解得.若过点的动直线的斜率不存在,则或,此时需,两者结合可得.综上,存在,使得恒成立.【点睛】思路点睛:圆锥曲线中的范围问题,往往需要用合适的参数表示目标代数式,表示过程中需要借助韦达定理,此时注意直线方程的合理假设.18.(1)(2)(3)【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线 ,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【解析】(1)由题意得,则,.(2)当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.(3)由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中, ①,②, ,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022高考数学真题分类汇编: 不等式
2022高考数学真题分类汇编:复数
2022高考数学真题分类汇编:计数原理
2022高考数学真题分类汇编:立体几何
2022高考数学真题分类汇编:平面向量
近五年2018-2022高考数学真题分类汇编07解三角形(Word版附解析)
近五年2018-2022高考数学真题分类汇编18平面解析几何(直线与方程)(Word版附解析)
近五年2018-2022高考数学真题分类汇编19平面解析几何(圆与方程)(Word版附解析)
2024年高考数学真题分类汇编04:数列
文档下载
收藏
所属:
高考 - 三轮冲刺
发布时间:2024-12-13 09:20:01
页数:24
价格:¥2
大小:1.46 MB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划