首页

2022高考数学真题分类汇编:立体几何

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/37

2/37

剩余35页未读,查看更多内容需下载

2022高考数学真题分类汇编十、立体几何一、单选题1.(2022·全国甲(文、理)T4)如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积.故选:B.2.(2022·全国甲(文)T9)在长方体中,已知与平面和平面\n所成的角均为,则()A.B.AB与平面所成的角为C.D.与平面所成的角为【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.对于A,,,,A错误;对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;对于C,,,,C错误;对于D,与平面所成角为,,而\n,所以.D正确.故选:D.3.(2022·全国甲(文)T10)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则()A.B.C.D.【答案】C【解析】【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.\n4.(2022·全国甲(理)T7)在长方体中,已知与平面和平面所成的角均为,则()A.B.AB与平面所成的角为C.D.与平面所成的角为【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,,解得.对于A,,,,A错误;对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;对于C,,,,C错误;\n对于D,与平面所成角为,,而,所以.D正确.故选:D.5.(2022·全国甲(理)T8)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,.“会圆术”给出的弧长的近似值s的计算公式:.当时,()A.B.C.D.【答案】B【解析】【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,\n又,所以,则,故,所以.故选:B.6.(2022·全国甲(理)T9)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和.若,则()A.B.C.D.【答案】C【解析】【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,\n所以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.7.(2022·全国乙(文)T9)在正方体中,E,F分别为的中点,则()A.平面平面B.平面平面C.平面平面D.平面平面【答案】A【解析】【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,\n因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;如图,以点为原点,建立空间直角坐标系,设,则,,则,,设平面的法向量为,则有,可取,同理可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,\n故选:A.8.(2022·全国乙(文)T12)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A.B.C.D.【答案】C【解析】【分析】先证明当四棱锥顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又则当且仅当即时等号成立,\n故选:C9.(2022·全国乙(理)T7)在正方体中,E,F分别为的中点,则()A.平面平面B.平面平面C.平面平面D.平面平面【答案】A【解析】【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;如图,以点原点,建立空间直角坐标系,设,则,,则,,\n设平面的法向量为,则有,可取,同理可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.10.(2022·全国乙(理)T9)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()\nA.B.C.D.【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又则当且仅当即时等号成立,故选:C11.(2022·新高考Ⅰ卷T4)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()()A.B.C.D.【答案】C【解析】\n【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴.故选:C.12.(2022·新高考Ⅰ卷T8)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()A.B.C.D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,\n所以正四棱锥的体积,所以,当时,,当时,,所以当时,正四棱锥的体积取最大值,最大值为,又时,,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.13.(2022·新高考Ⅰ卷T9)已知正方体,则()A.直线与所成的角为B.直线与所成的角为C.直线与平面所成的角为D.直线与平面ABCD所成的角为【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;\n连接,因为平面,平面,则,因为,,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,,,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD14.(2022·新高考Ⅱ卷T7)正三棱台高为1,上下底边长分别为和,所有顶点在同一球面上,则球的表面积是()A.B.C.D.【答案】A\n【解析】【分析】根据题意可求出正三棱台上下底面所在圆面半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,,故或,即或,解得符合题意,所以球的表面积为.故选:A.15.(2022·新高考Ⅱ卷T11)如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则()A.B.C.D.【答案】CD【解析】【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.\n【详解】设,因为平面,,则,,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,,,则,,,则,则,,,故A、B错误;C、D正确.故选:CD.16.(2022·北京卷T9)已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为()A.B.C.D.【答案】B【解析】【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.\n【详解】设顶点在底面上的投影为,连接,则为三角形的中心,且,故.因为,故,故的轨迹为以为圆心,1为半径的圆,而三角形内切圆的圆心为,半径为,故的轨迹圆在三角形内部,故其面积为故选:B17.(2022·浙江卷T8)如图,已知正三棱柱,E,F分别是棱上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则()A.B.C.D.【答案】A\n【解析】【分析】先用几何法表示出,再根据边长关系即可比较大小.【详解】如图所示,过点作于,过作于,连接,则,,,,,,所以,故选:A.三、解答题1.(2022·全国甲(文)T19)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直.(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度).\n【答案】(1)证明见解析;(2).【解析】【分析】(1)分别取的中点,连接,由平面知识可知,,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出.【小问1详解】如图所示:,分别取的中点,连接,因为为全等的正三角形,所以,,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面.【小问2详解】\n如图所示:,分别取中点,由(1)知,且,同理有,,,,由平面知识可知,,,,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍.因为,,点到平面的距离即为点到直线的距离,,所以该几何体的体积.2.(2022·全国甲(理)T18)在四棱锥中,底面.(1)证明:;(2)求PD与平面所成的角的正弦值.【答案】(1)证明见解析;\n(2).【解析】【分析】(1)作于,于,利用勾股定理证明,根据线面垂直性质可得,从而可得平面,再根据线面垂直的性质即可得证;(2)以点为原点建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:在四边形中,作于,于,因为,所以四边形为等腰梯形,所以,故,,所以,所以,因为平面,平面,所以,又,所以平面,又因平面,所以;【小问2详解】解:如图,以点原点建立空间直角坐标系,,\n则,则,设平面的法向量,则有,可取,则,所以与平面所成角的正弦值为.3.(2022·全国乙(文)T18)如图,四面体中,,E为AC的中点.(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.\n【答案】(1)证明详见解析(2)【解析】【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.【小问1详解】由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.【小问2详解】依题意,,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小值.过作,垂足为,\n在中,,解得,所以,所以过作,垂足为,则,所以平面,且,所以,所以.4.(2022·全国乙(理)T18)如图,四面体中,,E为的中点.(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.【答案】(1)证明过程见解析\n(2)与平面所成的角的正弦值为【解析】【分析】(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.【小问1详解】因为,E为的中点,所以;在和中,因为,所以,所以,又因为E为的中点,所以;又因为平面,,所以平面,因为平面,所以平面平面.【小问2详解】连接,由(1)知,平面,因为平面,所以,所以,当时,最小,即的面积最小.因为,所以,又因为,所以是等边三角形,因为E为的中点,所以,,因为,所以,在中,,所以.以为坐标原点建立如图所示的空间直角坐标系,则,所以,设平面的一个法向量为,\n则,取,则,又因为,所以,所以,设与平面所成的角的正弦值为,所以,所以与平面所成的角的正弦值为.5.(2022·新高考Ⅰ卷T19)如图,直三棱柱的体积为4,的面积为.\n(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.【答案】(1)(2)【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.【小问1详解】在直三棱柱中,设点A到平面的距离为h,则,解得,所以点A到平面的距离为;【小问2详解】取的中点E,连接AE,如图,因为,所以,\n又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,,又平面且相交,所以平面,所以两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得,所以,,所以,则,所以的中点,则,,设平面的一个法向量,则,可取,设平面的一个法向量,则,可取,\n则,所以二面角的正弦值为.6.(2022·新高考Ⅱ卷T20)如图,是三棱锥的高,,,E是的中点.(1)求证:平面;(2)若,,,求二面角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;(2)过点作,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;小问1详解】证明:连接并延长交于点,连接、,因为是三棱锥的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,,所以\n所以,即,所以为的中点,又为的中点,所以,又平面,平面,所以平面【小问2详解】解:过点作,如图建立平面直角坐标系,因为,,所以,又,所以,则,,所以,所以,,,,所以,\n则,,,设平面法向量为,则,令,则,,所以;设平面的法向量为,则,令,则,,所以;所以设二面角为,由图可知二面角为钝二面角,所以,所以故二面角的正弦值为;7.(2022·北京卷T17)如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.(1)求证:平面;(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN\n所成角的正弦值.条件①:;条件②:.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)见解析(2)见解析【解析】【分析】(1)取的中点为,连接,可证平面平面,从而可证平面.(2)选①②均可证明平面,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.【小问1详解】取的中点为,连接,由三棱柱可得四边形为平行四边形,而,则,而平面,平面,故平面,而,则,同理可得平面,而平面,故平面平面,而平面,故平面,【小问2详解】因为侧面为正方形,故,而平面,平面平面,平面平面,故平面,因为,故平面,因为平面,故,若选①,则,而,,\n故平面,而平面,故,所以,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.若选②,因为,故平面,而平面,故,而,故,而,,故,所以,故,而,,故平面,故可建立如所示的空间直角坐标系,则,故,设平面的法向量为,则,从而,取,则,设直线与平面所成的角为,则.\n8.(2022·浙江卷T19)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.(1)证明:;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】【分析】(1)过点、分别做直线、的垂线、并分别交于点、,由平面知识易得,再根据二面角的定义可知,,由此可知,,,从而可证得平面,即得;(2)由(1)可知平面,过点做平行线,所以可以以点\n为原点,,、所在直线分别为轴、轴、轴建立空间直角坐标系,求出平面的一个法向量,以及,即可利用线面角的向量公式解出.【小问1详解】过点、分别做直线、的垂线、并分别交于点交于点、.∵四边形和都是直角梯形,,,由平面几何知识易知,,则四边形和四边形是矩形,∴在Rt和Rt,,∵,且,∴平面是二面角的平面角,则,∴是正三角形,由平面,得平面平面,∵是的中点,,又平面,平面,可得,而,∴平面,而平面.【小问2详解】因为平面,过点做平行线,所以以点为原点,,、所在直线分别为轴、轴、轴建立空间直角坐标系,设,则,设平面的法向量为由,得,取,设直线与平面所成角为,\n∴.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2022-06-18 09:00:17 页数:37
价格:¥5 大小:2.21 MB
文章作者:fenxiang

推荐特供

MORE