首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
三轮冲刺
>
2024年高考数学真题分类汇编04:数列
2024年高考数学真题分类汇编04:数列
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/19
2
/19
剩余17页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
数列一、单选题1.(2024·全国)等差数列的前项和为,若,( )A.B.C.1D.2.(2024·全国)等差数列的前项和为,若,,则( )A.B.C.1D.2二、填空题3.(2024·全国)记为等差数列的前n项和,若,,则.4.(2024·北京)已知,,不为常数列且各项均不相同,下列正确的是.①,均为等差数列,则M中最多一个元素;②,均为等比数列,则M中最多三个元素;③为等差数列,为等比数列,则M中最多三个元素;④单调递增,单调递减,则M中最多一个元素.5.(2024·上海)无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是.三、解答题6.(2024·全国)设m为正整数,数列是公差不为0的等差数列,若从中删去两项和后剩余的项可被平均分为组,且每组的4个数都能构成等差数列,则称数列是可分数列.(1)写出所有的,,使数列是可分数列; (2)当时,证明:数列是可分数列;(3)从中一次任取两个数和,记数列是可分数列的概率为,证明:.7.(2024·全国)已知双曲线,点在上,为常数,.按照如下方式依次构造点,过作斜率为的直线与的左支交于点,令为关于轴的对称点,记的坐标为.(1)若,求;(2)证明:数列是公比为的等比数列;(3)设为的面积,证明:对任意的正整数,.8.(2024·全国)已知等比数列的前项和为,且.(1)求的通项公式;(2)求数列的通项公式.9.(2024·全国)记为数列的前项和,且.(1)求的通项公式;(2)设,求数列的前项和为.10.(2024·北京)设集合.对于给定有穷数列,及序列,,定义变换:将数列的第项加1,得到数列;将数列的第列加,得到数列…;重复上述操作,得到数列,记为.(1)给定数列和序列,写出;(2)是否存在序列,使得为,若存在,写出一个符合条件的;若不存在,请说明理由; (3)若数列的各项均为正整数,且为偶数,证明:“存在序列,使得为常数列”的充要条件为“”.11.(2024·天津)已知数列是公比大于0的等比数列.其前项和为.若.(1)求数列前项和;(2)设,,其中是大于1的正整数.(ⅰ)当时,求证:;(ⅱ)求. 参考答案:1.D【分析】可以根据等差数列的基本量,即将题目条件全转化成和来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法一:利用等差数列的基本量由,根据等差数列的求和公式,,又.故选:D方法二:利用等差数列的性质根据等差数列的性质,,由,根据等差数列的求和公式,,故.故选:D方法三:特殊值法不妨取等差数列公差,则,则.故选:D2.B【分析】由结合等差中项的性质可得,即可计算出公差,即可得的值.【解析】由,则,则等差数列的公差,故.故选:B.3.95【分析】利用等差数列通项公式得到方程组,解出,再利用等差数列的求和公式节即可得到答案.【解析】因为数列为等差数列,则由题意得,解得,则. 故答案为:.4.①③④【分析】利用两类数列的散点图的特征可判断①④的正误,利用反例可判断②的正误,结合通项公式的特征及反证法可判断③的正误.【解析】对于①,因为均为等差数列,故它们的散点图分布在直线上,而两条直线至多有一个公共点,故中至多一个元素,故①正确.对于②,取则均为等比数列,但当为偶数时,有,此时中有无穷多个元素,故②错误.对于③,设,,若中至少四个元素,则关于的方程至少有4个不同的正数解,若,则由和的散点图可得关于的方程至多有两个不同的解,矛盾;若,考虑关于的方程奇数解的个数和偶数解的个数,当有偶数解,此方程即为,方程至多有两个偶数解,且有两个偶数解时,否则,因单调性相反,方程至多一个偶数解,当有奇数解,此方程即为,方程至多有两个奇数解,且有两个奇数解时即否则,因单调性相反,方程至多一个奇数解,因为,不可能同时成立,故不可能有4个不同的正数解,故③正确. 对于④,因为为单调递增,为递减数列,前者散点图呈上升趋势,后者的散点图呈下降趋势,两者至多一个交点,故④正确.故答案为:①③④【点睛】思路点睛:对于等差数列和等比数列的性质的讨论,可以利用两者散点图的特征来分析,注意讨论两者性质关系时,等比数列的公比可能为负,此时要注意合理转化.5.【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【解析】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.6.(1)(2)证明见解析(3)证明见解析 【分析】(1)直接根据可分数列的定义即可;(2)根据可分数列的定义即可验证结论;(3)证明使得原数列是可分数列的至少有个,再使用概率的定义.【解析】(1)首先,我们设数列的公差为,则.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形,得到新数列,然后对进行相应的讨论即可.换言之,我们可以不妨设,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从中取出两个数和,使得剩下四个数是等差数列.那么剩下四个数只可能是,或,或.所以所有可能的就是.(2)由于从数列中取出和后,剩余的个数可以分为以下两个部分,共组,使得每组成等差数列:①,共组;②,共组.(如果,则忽略②)故数列是可分数列.(3)定义集合,.下面证明,对,如果下面两个命题同时成立,则数列一定是可分数列:命题1:或; 命题2:.我们分两种情况证明这个结论.第一种情况:如果,且.此时设,,.则由可知,即,故.此时,由于从数列中取出和后,剩余的个数可以分为以下三个部分,共组,使得每组成等差数列:①,共组;②,共组;③,共组.(如果某一部分的组数为,则忽略之)故此时数列是可分数列.第二种情况:如果,且.此时设,,.则由可知,即,故.由于,故,从而,这就意味着.此时,由于从数列中取出和后,剩余的个数可以分为以下四个部分,共组,使得每组成等差数列:①,共组;②,,共组; ③全体,其中,共组;④,共组.(如果某一部分的组数为,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含个行,个列的数表以后,个列分别是下面这些数:,,,.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍中除开五个集合,,,,中的十个元素以外的所有数.而这十个数中,除开已经去掉的和以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列是可分数列.至此,我们证明了:对,如果前述命题1和命题2同时成立,则数列一定是可分数列.然后我们来考虑这样的的个数.首先,由于,和各有个元素,故满足命题1的总共有个;而如果,假设,则可设,,代入得.但这导致,矛盾,所以.设,,,则,即. 所以可能的恰好就是,对应的分别是,总共个.所以这个满足命题1的中,不满足命题2的恰好有个.这就得到同时满足命题1和命题2的的个数为.当我们从中一次任取两个数和时,总的选取方式的个数等于.而根据之前的结论,使得数列是可分数列的至少有个.所以数列是可分数列的概率一定满足.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7.(1),(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明的取值为与无关的定值即可.思路二:使用等差数列工具,证明的取值为与无关的定值即可.【解析】(1) 由已知有,故的方程为.当时,过且斜率为的直线为,与联立得到.解得或,所以该直线与的不同于的交点为,该点显然在的左支上.故,从而,.(2)由于过且斜率为的直线为,与联立,得到方程.展开即得,由于已经是直线和的公共点,故方程必有一根.从而根据韦达定理,另一根,相应的.所以该直线与的不同于的交点为,而注意到的横坐标亦可通过韦达定理表示为,故一定在的左支上.所以.这就得到,. 所以.再由,就知道,所以数列是公比为的等比数列.(3)方法一:先证明一个结论:对平面上三个点,若,,则.(若在同一条直线上,约定)证明:.证毕,回到原题.由于上一小问已经得到,,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有 .而又有,,故利用前面已经证明的结论即得.这就表明的取值是与无关的定值,所以.方法二:由于上一小问已经得到,,故.再由,就知道,所以数列是公比为的等比数列.所以对任意的正整数,都有.这就得到,以及. 两式相减,即得.移项得到.故.而,.所以和平行,这就得到,即.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8.(1)(2)【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求.【解析】(1)因为,故,所以即故等比数列的公比为,故,故,故.(2)由等比数列求和公式得.9.(1)(2)【分析】(1)利用退位法可求的通项公式.(2)利用错位相减法可求. 【解析】(1)当时,,解得.当时,,所以即,而,故,故,∴数列是以4为首项,为公比的等比数列,所以.(2),所以故所以,.10.(1)(2)不存在符合条件的,理由见解析(3)证明见解析【分析】(1)直接按照的定义写出即可;(2)利用反证法,假设存在符合条件的,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【解析】(1)由题意得;(2)假设存在符合条件的,可知的第项之和为,第项之和为, 则,而该方程组无解,故假设不成立,故不存在符合条件的;(3)我们设序列为,特别规定.必要性:若存在序列,使得为常数列.则,所以.根据的定义,显然有,这里,.所以不断使用该式就得到,,必要性得证.充分性:若.由已知,为偶数,而,所以也是偶数.我们设是通过合法的序列的变换能得到的所有可能的数列中,使得最小的一个.上面已经证明,这里,.从而由可得.同时,由于总是偶数,所以和的奇偶性保持不变,从而和都是偶数.下面证明不存在使得.假设存在,根据对称性,不妨设,,即.情况1:若,则由和都是偶数,知. 对该数列连续作四次变换后,新的相比原来的减少,这与的最小性矛盾;情况2:若,不妨设.情况2-1:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾;情况2-2:如果,则对该数列连续作两次变换后,新的相比原来的至少减少,这与的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的都有.假设存在使得,则是奇数,所以都是奇数,设为.则此时对任意,由可知必有.而和都是偶数,故集合中的四个元素之和为偶数,对该数列进行一次变换,则该数列成为常数列,新的等于零,比原来的更小,这与的最小性矛盾. 综上,只可能,而,故是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11.(1)(2)①证明见详解;②【分析】(1)设等比数列的公比为,根据题意结合等比数列通项公式求,再结合等比数列求和公式分析求解;(2)①根据题意分析可知,,利用作差法分析证明;②根据题意结合等差数列求和公式可得,再结合裂项相消法分析求解.【解析】(1)设等比数列的公比为,因为,即,可得,整理得,解得或(舍去),所以.(2)(i)由(1)可知,且,当时,则,即可知,,可得,当且仅当时,等号成立,所以; (ii)由(1)可知:,若,则;若,则,当时,,可知为等差数列,可得,所以,且,符合上式,综上所述:.【点睛】关键点点睛:1.分析可知当时,,可知为等差数列;2.根据等差数列求和分析可得.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022高考数学真题分类汇编: 不等式
2022高考数学真题分类汇编:复数
2022高考数学真题分类汇编:计数原理
2022高考数学真题分类汇编:平面向量
高考数学试题分类汇编数列
【备考2022】2022高考数学 (真题+模拟新题分类汇编) 数列 理
【备考2022】2022高考数学 (真题+模拟新题分类汇编) 数列 文
2022年全国高考数学 试题分类汇编4 数列
近五年2018-2022高考数学真题分类汇编04导数及其应用(Word版附解析)
近五年2018-2022高考数学真题分类汇编11数列求和(Word版附解析)
文档下载
收藏
所属:
高考 - 三轮冲刺
发布时间:2024-12-13 08:20:01
页数:19
价格:¥2
大小:917.32 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划