首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
一轮复习
>
2025年高考数学一轮讲义第9章 第6课时 二项分布、超几何分布与正态分布
2025年高考数学一轮讲义第9章 第6课时 二项分布、超几何分布与正态分布
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/10
2
/10
剩余8页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
第6课时 二项分布、超几何分布与正态分布[考试要求] 1.理解二项分布、超几何分布的概念,能解决一些简单的实际问题.2.借助正态曲线了解正态分布的概念,并进行简单应用.1.n重伯努利试验与二项分布(1)n重伯努利试验把只包含________结果的试验叫做伯努利试验.将一个伯努利试验独立地重复进行n次所组成的随机试验称为______________.(2)二项分布在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=___________________,k=0,1,2,…,n,则称随机变量X服从________,记作X~____________.(3)两点分布与二项分布的均值、方差①若随机变量X服从两点分布,那么E(X)=p,D(X)=____________.②若X~B(n,p),则E(X)=____,D(X)=______________.2.超几何分布(1)定义在含有M件次品的N件产品中,随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=__,k=m,m+1,m+2,…,r,其中n,M,N∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},称随机变量X服从超几何分布.(2)超几何分布的均值若X服从参数为N,M,n的超几何分布,则E(X)=__.3.正态曲线与正态分布(1)我们称f(x)=1σ2πe-(x-μ)22σ2,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,10/10 称其图象为正态密度曲线,简称正态曲线.(2)若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为__________________.特别地,当μ=__,σ=__时,称随机变量X服从标准正态分布.(3)正态曲线的特点①曲线是单峰的,它关于直线______对称;②曲线在______处达到峰值1σ2π;③当|x|无限增大时,曲线无限接近x轴.(4)正态变量在三个特殊区间内取值的概率①P(μ-σ≤X≤μ+σ)≈______________;②P(μ-2σ≤X≤μ+2σ)≈______________;③P(μ-3σ≤X≤μ+3σ)≈______________.在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取[μ-3σ,μ+3σ]中的值,这在统计学中称为3σ原则.(5)正态分布的均值与方差若X~N(μ,σ2),则E(X)=__,D(X)=____.提醒:正态分布是连续型随机变量,要注意它是用面积表示概率,解决问题一定用到对称性.一、易错易混辨析(正确的打“√”,错误的打“×”)(1)X表示n次重复抛掷1枚骰子出现点数是3的倍数的次数,则X服从二项分布.( )(2)从4名男演员和3名女演员中选出4人,其中女演员的人数X服从超几何分布.( )(3)超几何分布与二项分布的期望值相同.( )(4)正态曲线与x轴围成的面积随参数μ,σ的变化而变化.( )二、教材经典衍生1.(人教A版选择性必修第三册P79例6改编)袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )10/10 A.25 B.35 C.18125 D.541252.(人教A版选择性必修第三册P78探究改编)设50个产品中有10个次品,任取产品20个,取到的次品可能有X个,则E(X)=( )A.4 B.3C.2 D.13.(人教A版选择性必修第三册P87练习T2改编)已知随机变量ξ服从正态分布N(0,σ2),若P(ξ>2)=0.023,则P(-2≤ξ≤2)=( )A.0.477 B.0.628C.0.954 D.0.9774.(人教A版选择性必修第三册P78例5改编)在含有3件次品的10件产品中,任取4件,X表示取到的次品的个数,则P(X=2)=________.考点一 二项分布 二项分布的期望[典例1] 小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23.(1)求比赛结束时恰好打了7局的概率;[听课记录] (2)若现在是小明6∶2的比分领先,记X表示结束比赛还需打的局数,求X的分布列及期望.[听课记录] 二项分布的性质10/10 [典例2] (2024·湖南长沙模拟)若X~B100,13,则当k=0,1,2,…,100时( )A.P(X=k)≤P(X=50)B.P(X=k)≤P(X=32)C.P(X=k)≤P(X=33)D.P(X=k)≤P(X=49)[听课记录] 二项分布问题的解题关键定型①在每一次试验中,事件发生的概率相同.②各次试验中的事件是相互独立的.③在每一次试验中,试验的结果只有两个,即发生与不发生定参确定二项分布中的两个参数n和p,即试验发生的次数和试验中事件发生的概率提醒:下列问题能转化为二项分布①条件不变,重复进行试验,一般取球后再放回;②该地区人数多或不知总体,从中抽取几个;③某产品服从正态分布,若干个产品服从二项分布;④用频率表示概率,有时转化为二项分布.[跟进训练]1.某地区鼓励农户利用荒坡种植果树.某农户考察三种不同的果树苗A,B,C,经引种试验后发现,引种树苗A的自然成活率为0.8,引种树苗B,C的自然成活率均为p(0.7≤p≤0.9).(1)任取树苗A,B,C各一棵,估计自然成活的棵数为X,求X的分布列及数学期望E(X);(2)将(1)中的E(X)取得最大值时p的值作为B种树苗自然成活的概率.该农户决定引种n棵B种树苗,引种后没有自然成活的树苗中有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活.①求一棵B种树苗最终成活的概率;10/10 ②若每棵树苗最终成活后可获利300元,不成活的每棵亏损50元,该农户为了获利不低于20万元,问至少引种B种树苗多少棵? 考点二 超几何分布[典例3] 某公司采购部需要采购一箱电子元件,供货商对该电子元件整箱出售,每箱10个.在采购时,随机选择一箱并从中随机抽取3个逐个进行检验.若其中没有次品,则直接购买该箱电子元件;否则,不购买该箱电子元件.(1)若某箱电子元件中恰有一个次品,求该箱电子元件能被直接购买的概率;(2)若某箱电子元件中恰有两个次品,记对随机抽取的3个电子元件进行检验时次品的个数为X,求X的分布列及期望.[听课记录] (1)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.(2)超几何分布的特征是:①考察对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体数X的概率分布.(3)超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.[跟进训练]2.(2024·重庆模拟)已知一个袋子中装有大小、形状完全相同的3个白球和2个黑球.(1)若从袋中一次任取3个球,设取到的3个球中有X个黑球,求X的分布列及数学期望;(2)10/10 若从袋中每次随机取出一个球,记下颜色后将球放回袋中,重复此过程,直至他连续2次取到黑球才停止,设他在第Y次取球后停止取球,求P(Y=5). 考点三 正态分布[典例4] (1)(2021·新高考Ⅱ卷)某物理量的测量结果服从正态分布N(10,σ2),则下列结论中不正确的是( )A.σ越小,该物理量一次测量结果落在(9.9,10.1)内的概率越大B.该物理量一次测量结果大于10的概率为0.5C.该物理量一次测量结果大于10.01的概率与小于9.99的概率相等D.该物理量一次测量结果落在(9.9,10.2)内的概率与落在(10,10.3)内的概率相等(2)设随机变量X~N(2,9),若P(X>c+1)=P(X<c-1),则c的值为________,P(-4≤X≤8)=________.(若X~N(μ,σ2),则P(|X-μ|≤2σ)=0.9545)[听课记录] 解决正态分布问题的三个关键点(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率;μ决定正态曲线位置,σ的大小决定正态曲线的稳定与波动大小,即高矮与胖瘦;注意只有在标准正态分布下对称轴才为x=0.[跟进训练]3.(1)设两个正态分布N1μ1,σ12(σ1>0)和N2μ2,σ22(σ2>0)的概率分布密度函数图象如图所示,则有( )10/10 A.μ1<μ2,σ1<σ2 B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2 D.μ1>μ2,σ1>σ2(2)(多选)(2024·石家庄模拟)若随机变量X~N(1,σ2),且正态分布N(1,σ2)的正态密度曲线如图所示,则下列选项中,可以表示图中阴影部分面积的是( )A.12-P(X≤0)B.12-P(X≥2)C.12P(X≤2)-12P(X≤0)D.12-P(1≤X≤2)(3)为了解高三复习备考情况,某校组织了一次阶段考试.经数据分析,高三全体考生的数学成绩近似服从正态分布X~N(100,17.52).已知成绩在117.5分以上(不含117.5分)的学生有80人,则此次参加考试的学生成绩低于82.5分的概率为________;如果成绩大于135分的为特别优秀,那么本次数学考试成绩特别优秀的大约有________人.(若X~N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545)超几何分布二项分布区别描述的是不放回抽样问题(总体在变化),一次性取描述的是有放回抽样问题(总体不改变),一个一个的取考察对象分为两类每一次试验是伯努利试验已知各类对象的个数10/10 联系(当总体容量很大时)超几何分布可近似看作二项分布[典例] 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:g),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图(如图).(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505g的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505g的产品数量,求Y的分布列.[赏析] (1)质量超过505g的产品的频率为5×0.05+5×0.01=0.3,所以质量超过505克的产品数量为40×0.3=12.(2)突破点1:总体一定,不放回抽样,超几何分布质量超过505g的产品数量为12,则质量未超过505g的产品数量为28,X的取值为0,1,2,X服从超几何分布.P(X=0)=C282C402=63130,P(X=1)=C121C281C402=2865,P(X=2)=C122C402=11130,所以X的分布列为X012P63130286511130(3)根据样本估计总体的思想,取一件产品,该产品的质量超过505g的概率为1240=310.突破点2:总体容量大,不放回抽样,视为二项分布从流水线上任取2件产品互不影响,该问题可看成2重伯努利试验,质量超过50510/10 g的件数Y的可能取值为0,1,2,且Y~B2,310,P(Y=k)=C2k1-3102-k310k,k=0,1,2.所以P(Y=0)=C20×7102=49100,P(Y=1)=C21×710×310=2150,P(Y=2)=C22×3102=9100.所以Y的分布列为Y012P4910021509100 抓住超几何分布与二项分布的各自特征,明确两者间的区别与联系是破解此类问题的关键所在.[跟进训练]1.一个袋中放有大小、形状均相同的小球,其中有1个红球、2个黑球,现随机等可能地取出小球.当有放回地依次取出两个小球时,记取出的红球数为ξ1;当无放回地依次取出两个小球时,记取出的红球数为ξ2,则( )A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)=E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)=E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)2.(多选)某工厂进行产品质量抽测,两位员工随机从生产线上各抽取数量相同的一批产品,已知在两人抽取的一批产品中均有5件次品,员工A从这一批产品中有放回地随机抽取3件产品,员工B从这一批产品中无放回地随机抽取3件产品.设员工A抽取到的3件产品中次品数量为X,员工B抽取到的3件产品中次品数量为Y,k=0,1,2,3.则下列判断正确的是( )A.随机变量X服从二项分布 B.随机变量Y服从超几何分布C.P(X=k)<P(Y=k)D.E(X)=E(Y)10/10 10/10
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2022届高考数学二轮专题复习8二项分布超几何分布和正态分布
第十章 §10.7 二项分布、超几何分布与正态分布
第十章 §10.7 二项分布、超几何分布与正态分布
第46讲 超几何分布与二项分布(解析版)
2024年高三培优讲义——四大分布:二项分布,超几何分布,正态分布
2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布
2024年高考数学一轮复习讲义(学生版)第10章 §10.7 二项分布、超几何分布与正态分布
2024高考数学一轮复习同步练习:第10章 §10.7 二项分布、超几何分布与正态分布
2024年高考数学一轮复习(新高考版) 第10章 §10.7 二项分布、超几何分布与正态分布
2025数学一轮总复习:课时分层作业68 二项分布、超几何分布与正态分布
文档下载
收藏
所属:
高考 - 一轮复习
发布时间:2024-10-02 13:40:02
页数:10
价格:¥1
大小:272.84 KB
文章作者:180****8757
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划