首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
高考
>
模拟考试
>
湖北省部分学校2023-2024学年高三上学期12月联考数学试卷(Word版附答案)
湖北省部分学校2023-2024学年高三上学期12月联考数学试卷(Word版附答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/13
2
/13
剩余11页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
湖北省高三12月联考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:高考全部内容.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,,则()A.B.C.D.2.()A.B.C.D.3.已知向量,满足,且,则()A.1B.2C.D.4.直线关于轴对称的直线方程是()A.B.C.D.5.如图,在棱长都相等的正三棱柱中,为棱的中点,则直线与直线所成的角为() A.B.C.D.6.已知是第一象限角,且,则()A.B.C.D.7.已知数列的前项和为,且,若恒成立,则的最小值是()A.B.4C.D.58.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石,布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔,简单的讲就是对于满足一定条件的连续函数,存在一个实数,使得,那么我们称该函数为“不动点”函数,为函数的不动点.设函数,.若在区间上存在不动点,则的取值范围是()A.B.C.D.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.根据国家统计局发布的数据,我国今年3月份至10月份社会消费品零售总额同比增速如图所示,则()A.我国今年3月份至10月份社会消费品零售总额同比增速最高为 B.我国今年3月份至10月份社会消费品零售总额同比增速的中位数为C.我国今年3月份至10月份社会消费品零售总额同比增速的分位数为D.我国今年3月份至10月份社会消费品零售总额同比增速的平均值为10.在椭圆中,为椭圆的右焦点,为椭圆的左顶点,为椭圆短轴上的顶点,若椭圆的离心率为,则()A.B.C.大于D.11.已知函数的定义域为,,则()A.B.C.为奇函数D.没有极值点12.如图,在一个有盖的圆锥容器内放入两个球体,已知该圆锥容器的底面圆直径和母线长都是,则()A.这两个球体的半径之和的最大值为B.这两个球体的半径之和的最大值为C.这两个球体的表面积之和的最大值为D.这两个球体的表面积之和的最大值为三、填空题:本题共4小题,每小题5分,共20分.13.在的展开式中,的系数为___________.14.已知点P是抛物线上的一个动点,则点P到点的距离与点P 到该抛物线准线的距离之和的最小值为___________.15.已知函数,的图象关于直线对称,且在上单调,则的最大值为___________.16.已知函数,若函数有4个零点,且其4个零点,,,成等差数列,则___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在中,内角A,B,C的对边分别为a,b,c.已知,,.(1)求的值;(2)求的值.18.(12分)如图,在长方体中,点E,F分别在棱,上,,,,.(1)证明:.(2)求平面与平面的夹角的余弦值.19.(12分)已知数列满足,.(1)求的通项公式;(2)若,记数列的前99项和为,求.20.(12分)已知函数.(1)求曲线在点处的切线方程, (2)证明:.21.(12分)已知双曲线的焦距为,点在上.(1)求的方程;(2),分别为的左、右焦点,过外一点作的两条切线,切点分别为A,B,若直线,互相垂直,求面积的最大值.22.(12分)有一位老师叫他的学生到麦田里,摘一颗全麦田里最大的麦穗,期间只能摘一次,并且只可以向前走,不能回头.结果,他的学生两手空空走出麦田,因为他不知前面是否有更好的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设该学生在麦田中一共会遇到颗麦穗(假设颗麦穗的大小均不相同),最大的那颗麦穗出现在各个位置上的概率相等,为了使他能在这些麦穗中摘到那颗最大的麦橞,现有如下策略:不摘前颗麦穗,自第颗开始,只要发现比他前面见过的麦穗都大的,就摘这颗麦穗,否则就摘最后一颗.设,该学生摘到那颗最大的麦穗的概率为.(取)(1)若,,求;(2)若取无穷大,从理论的角度,求的最大值及取最大值时的值. 湖北省高三12月联考数学参考答案1.C,,.2.B.3.D因为,所以,解得..4.C设是所求直线上任意一点,则关于轴对称的点为,且在直线上,代入可得,即.5.D设E,F分别为棱,的中点,连接,,,易得,,所以(或其补角)为直线与直线所成的角.设正三棱柱的棱长为,则,,,,所以,.6.A因为是第一象限角,且,所以,,,,.7.B,,两式相减可得 ,所以.因为,所以,即.故.8.A由题意可得,在上有解,即有解.令,,则.令函数,.当时,,所以在上单调递增.为偶函数,所以在上单调递减.,,故,9.ABD我国今年3月份至10月份社会消费品零售总额同比增速从小到大依次为2.5%,3.1%,4.6%,5.5%,7.6%,10.6%,12.7%,18.4%.我国今年3月份至10月份社会消费品零售总额同比增速最高为18.4%,A正确.我国今年3月份至10月份社会消费品零售总额同比增速的中位数为,B正确.,我国今年3月份至10月份社会消费品零售总额同比增速的分位数为,C错误.我国今年3月份至10月份社会消费品零售总额同比增速的平均值为,D正确.10.ACD因为,所以,即,所以,,.因为,所以,即大于.11.AC令,得,A正确.令,得,令,得,则为奇函数,C正确.由,可得,当时,可设,则,当时,,,当时,,当时,,所以在上单调递增,在上单调递减,此时有极值点, D错误.的值不确定,B错误.12.BC当这两个球体的表面积之和取最大值时,有一个球体和圆锥的底面相切,过底面圆的直径作截面,如图所示.过点作,垂足为,过点作,垂足为,过点作,垂足为.设圆的半径为,圆的半径为r,的最大值为,且取最大值时,,所以,,,,.因为,所以①,整理得,解得.令函数,,.令函数,,所以是增函数.又因为,,所以,,所以,,,,即,,,,所以在上单调递减,在上单调递增.因为,所以,即这两个球体的半径之和的最大值为.由①可得,这两个球体的表面积之和为.令,函数在上单调递增,所以,即这两个球体的表面积之和的最大值为. 13.15,令,解得,故的系数为.14.5设抛物线的焦点为,则.由抛物线的定义可得到该抛物线准线的距离等于,.15.因为的图象关于直线对称,所以,,解得,.因为在上单调,所以,即,解得.当时,.当时,,所以当,时,单调递减.故的最大值为.16.因为是偶函数,所以,.因为成等差数列,所以,则.因为,所以,解得,.17.解:(1)因为,所以.因为,所以,解得.(2)由(1)可得.因为,所以,解得.18.解:以为坐标原点,,,所在直线分别为x,y,z 轴,建立如图所示的空间直角坐标系,则,,,所以,,(1)证明:因为,所以.(2)设平面的法向量为,则即不妨取,则.易得平面,所以是平面的一个法向量,且..故平面与平面的夹角的余弦值为.19.解:(1)因为,所以,,累加得,所以.(2)因为,所以.当时,;当时,;当时,. 所以数列是以3为周期的数列.故.20.(1)解:,,.故曲线在点处的切线方程为.(2)证明:由(1)得.令函数,则,所以是增函数.,,所以存在,使得,即.所以当时,,当时,,所以在上单调递减,在上单调递增..因为,所以,所以.故. 21.解:(1)由题可知,解得故的方程为.(2)由题可知,直线,的斜率均存在,设,过且与相切的直线,联立方程组整理得,则,整理得.将代人,得,则,从而.因为切线,互相垂直,所以,即.所以,,当且仅当时,等号成立.故面积的最大值为.22.解:(1)这4颗麦穗的位置从第1颗到第4颗排序,有种情况.要摘到那颗最大的麦穗,有以下两种情况:①最大的麦穗是第3颗,其他的麦穗随意在哪个位置,有种情况.②最大的麦穗是最后1颗,第二大的麦穗是第1颗或第2颗,其他的麦穗随意在哪个位置,有种情况.故所求概率为.(2)记事件表示最大的麦穗被摘到,事件表示最大的麦穗在麦穗中排在第颗.因为最大的那颗麦穗出现在各个位置上的概率相等,所以.以给定所在位置的序号作为条件,. 当时,最大的麦穗在前颗麦穗之中,不会被摘到,此时.当时,最大的麦穗被摘到,当且仅当前颗麦穗中的最大的一颗在前颗麦穗中时,此时.由全概率公式知.令函数,.当时,,当时,,所以在上单调递增,在上单调递减.所以.所以当,时取得最大值,最大值为,此时,
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
辽宁部分学校2023-2024学年高三上学期期中大联考地理试题(Word版附解析)
辽宁部分学校2023-2024学年高三上学期期中大联考历史试题(Word版附答案)
辽宁部分学校2023-2024学年高三上学期期中大联考物理试题(Word版附答案)
辽宁部分学校2023-2024学年高三上学期期中大联考语文试题(Word版附解析)
湖北省武汉市新洲区部分学校2023-2024学年高三上学期期中联考语文试题(Word版附解析)
广东省部分学校2023-2024学年高三上学期11月联考语文试题(Word版附解析)
辽宁省部分学校2023-2024学年高三上学期12月联考政治试题(Word版附答案)
广东省部分学校2023-2024学年高三上学期11月联考生物试题(Word版附答案)
湖北省部分学校2023-2024学年高三上学期12月联考语文试卷(Word版附答案)
湖北省腾云联盟2023-2024学年高三上学期12月联考数学试卷(Word版附答案)
文档下载
收藏
所属:
高考 - 模拟考试
发布时间:2024-01-17 04:25:02
页数:13
价格:¥3
大小:1019.09 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划